
State: Normalized 150-dimensional observation (raw features). 
Action: Predicted bandwidth in Mbps.
Reward: Both audio and video objective scores are used, with different weight, the reward 
function is defined as: 𝑟𝑟 𝑠𝑠,𝑎𝑎 = 2 − 𝛼𝛼 ∗ 𝑞𝑞𝑎𝑎 +  𝛼𝛼 ∗ 𝑞𝑞𝑣𝑣

The weight 𝛼𝛼 in the reward function is set to 1.5, as it gives the lowest MSE and error rate.
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Schaferct: Accurate Bandwidth Prediction for Real-Time
Media Streaming with Offline Reinforcement Learning

Goal: Developing a deep learning-based policy model (receiver-side bandwidth estimator, π)
with offline RL techniques to improve QoE for RTC system users as measured by objective 
audio/video quality scores.
Given: Dataset of trajectories for Microsoft Teams audio/video calls.
 Training dataset: 18859 calls. 
 Evaluation dataset: 9405 calls containing ground truth (bottleneck link bandwidth).

Evaluation: The scores in 2-stage evaluation. The scoring function:

Team Schaferct: We won the first prize in ACM MMSys 2024 Grand Challenge on Offline 
Reinforcement Learning for Bandwidth Estimation in Real Time Communications.

Grand Challenge

Dataset

𝔼𝔼𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 𝔼𝔼𝑛𝑛 𝑟𝑟𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑟𝑟𝑛𝑛𝑣𝑣𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎  𝜖𝜖 [0, 10]

Results: Conducted by Grand Challenge Committee
Our model, Schaferct, demonstrates comparable performance to the best behavior policy (v1) in 
the released datasets across all metrics.

Results: Final Evaluation Stage Ranking
In real-world test (600 3-minute calls) across diverse network conditions with temporal 
fluctuations, Schaferct took the first place with the highest scores.
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N x 150-dim obs

N x prediction value

N x video score

N x audio score

1 Receiving rate 6 Minimum seen delay 11 Packet loss ratio
2 Number of received packets 7 Delay ratio 12 Average number of lost packets
3 Received bytes 8 Delay average minimum difference 13 Video packets probability
4 Queuing delay 9 Packet interarrival time 14 Audio packets probability
5 Delay 10 Packet jitter 15 Probing packets probability

150-dim obs: 15 Features X [5 Long MI (600ms) + 5 Short MI (60ms)]

Design Choice 1: Offline RL Algorithm
The main challenge in offline RL is trading off policy improvement against distributional shift.

How other methods address this problem:
 TD3+BC: Constrains the policy to limit how far it deviates from the behavior policy.
 CQL: Regularizes the learned value functions to assign low values to out-of-distribution actions.
Implicit Q-Learning (IQL) solves this by never needing to directly query or estimate values 
for actions that were not seen in the data, it uses the expectile regression update method to 
approximate the optimal value function. As shown in our local evaluation results, IQL has the 
lowest MSE and error rate, so we eventually choose IQL to train our model.

Design Detail of IQL
In the policy evaluation stage, IQL approximate the optimal value function 𝑉𝑉(𝑠𝑠) with the 
asymmetric loss 𝐿𝐿2𝜏𝜏  : 

𝐿𝐿2𝜏𝜏 𝑢𝑢 = |𝜏𝜏 − 1(𝑢𝑢 < 0)|𝑢𝑢2

ℒ𝑉𝑉(𝜓𝜓) = 𝔼𝔼 𝑙𝑙,𝑎𝑎 ~𝒟𝒟[𝐿𝐿2𝜏𝜏 ( 𝑄𝑄�𝜃𝜃 𝑠𝑠,𝑎𝑎  −  𝑉𝑉𝜓𝜓 𝑠𝑠  )]

The state-action value function 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎  is updated by minimizing the temporal difference (TD) 
loss:

ℒQ(𝜃𝜃) = 𝔼𝔼 𝑙𝑙,𝑎𝑎,𝑙𝑙′ ~𝒟𝒟[(𝑟𝑟 𝑠𝑠,𝑎𝑎 + 𝛾𝛾𝑉𝑉𝜓𝜓 𝑠𝑠′ − 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎 )2]

In the policy extraction stage, IQL optimizes the final policy 𝜋𝜋𝜙𝜙(𝑠𝑠) by minimizing the following 
loss: 

ℒ𝜋𝜋(𝜙𝜙) = 𝔼𝔼 𝑙𝑙,𝑎𝑎 ~𝒟𝒟[exp( 𝛽𝛽 𝑄𝑄�𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑉𝑉𝜓𝜓 𝑠𝑠  log𝜋𝜋𝜙𝜙 𝑎𝑎 𝑠𝑠  )]

Design Choice 2: State, Action and Reward

We try out 4 different actor network structures: 1) only FC; 2) FC+GRU; 3) FC+Residual and 
4) FC+GRU+Residual. We take the last one as our model for it has the lowest MSE.

Design Choice 3: Actor Network Structure

Our model has the lowest MSE yet the 
highest error rate. We infer that MSE is 
more representative than error rate, as 
the latter is constrained in [0, 1] while 
the former is not.

Evaluation: Prediction Accuracy

Evaluation: Case Study
Case #1:
The behavior policy: significantly 
overestimates the bottleneck link 
bandwidth.
The baseline model: follows the behavior 
policy, ends up in overestimation.
Our model: closely aligns with the true 
capacity.

Case #2:
The behavior policy: predicts the 
bandwidth just fine.
The baseline model: overestimates the 
ground truth after start-up phase.
Our model: aligns with the behavior 
policy with more conservative and 
accurate predictions. 

Conclusion
 We evaluated different offline RL algorithms and finally chose IQL to train our model.
 We conducted multiple experimental studies, including redesigning the actor network 

architecture and selecting appropriate parameter values.
 Our model reduced MSE by 18%-22% compared to both the baseline and six behavior 

policies, and won the first prize of the Bandwidth Estimation Challenge at ACM MMSys 
2024.

Limitations
 Dataset: Only 1,800 sessions are used for training due to the hardware constraints (e.g., 

GPU memory size) in our training environment.
 Session Selection: Session selection is random, without considering the distribution of 

observation-action-reward.
 Feature Engineering: All metrics are used.
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