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Abstract
In real-time communication (RTC) systems, accurate band-
width prediction is crucial for encoding and transmission
strategies to optimize users’ quality of experience (QoE) in
various network environments. In this paper, we propose
an offline reinforcement learning (RL) method to predict
bandwidth for RTC video streaming. We use a representa-
tive algorithm, named Implicit Q-Learning (IQL), to train the
model. To improve the performance, we carefully preprocess
the given dataset and redesign the neural network structure
and the reward function. Ablation studies are performed to
verify our design choices. Furthermore, compared to a base-
line method and six behavior policies, our method reduces
the mean squared error (MSE) by 18%-22%, demonstrating
high prediction accuracy. Our proposed method won the
first prize in ACM MMSys 2024 Grand Challenge on Of-
fline Reinforcement Learning for Bandwidth Estimation in
Real Time Communications. The source code is available at
https://github.com/n13eho/Schaferct.
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1 Introduction
In recent years, real-time communication (RTC) has emerged
as a crucial technological advancement and found wide-
spread applications, including low-latency live streaming
[28, 33–35], video conferencing [5, 23] and cloud gaming
[18, 29]. RTC systems aim to optimize the Quality of Expe-
rience (QoE) for users by delivering high-quality video and
audio and ensuring seamless communication processes (e.g.,
avoiding video stalling).
To achieve this goal, existing RTC systems, such as We-

bRTC [21], adaptively adjust the video quality (e.g., encoding
bitrate) to dynamic network conditions based on bandwidth
prediction. Mainstream bandwidth prediction methods can
be classified into two categories: (i) heuristic and (ii) learning-
based. One of the commonly used heuristic bandwidth pre-
diction algorithms is Google Congestion Control (GCC) [3]
in the WebRTC framework. GCC primarily predicts band-
width by monitoring the Round-Trip Time (RTT) variations
of the link. Although GCC demonstrates its high sensitivity
for proactively avoiding congestion, the complex and vari-
able nature of real-world RTC streaming can interfere with
GCC’s adaptability. To address this issue, previous studies
have proposed learning-based methods to optimize QoE for
real-time video streaming in a data-driven way. Examples
include Pensieve-V [17], which utilizes online reinforcement
learning (RL), and Concerto [35], an imitation learning (IL)-
based approach.
Nevertheless, both online RL and IL methods rely on in-

teracting with the environment, thereby requiring a long
time to fully explore the solution space in the training phase.
Worse still, training learning-based models directly in RTC
production systems is costly and impractical. This is because
the model’s performance is unstable until the training con-
verges, resulting in unpredictable QoE degradation for real
users. Therefore, existing methods prefer to develop a simu-
lator as the training environment [17, 35], which however
is difficult to faithfully capture the dynamics of real-world
video systems [1, 2, 16, 30].
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As a solution, we in this paper propose a bandwidth predic-
tion method for RTC streaming based on offline (data-driven)
RL techniques. Offline RL utilizes a pre-collected and static
offline dataset to search for policies that optimize QoE. In this
way, the model can leverage diverse experiences collected
by arbitrary other policies, without online interactions with
the real environment [6, 14, 31].
Based on a real-world dataset of observed network dy-

namics with objective metrics reflecting user-perceived au-
dio/video quality provided by Microsoft Teams, we take part
in the ACM MMSys 2024 Grand Challenge [19] using Of-
fline RL techniques to address the difficulties of bandwidth
prediction in RTC systems. For effective training, we first
preprocess the training dataset, including filling in the miss-
ing or abnormal values and carefully splitting the training
and test sets (§2). Using a representative offline RL algo-
rithm, namely Implicit Q-Learning (IQL) [12], we redesign
the neural network (NN) structure and the reward function
(§3). Extensive experiments are conducted to identify the
design choice of our methods, including the training algo-
rithm, the NN structure, and the reward setting (§5). Our
local evaluation results indicate that our model outperforms
the baseline model and all original behavior policies in terms
of prediction metrics (§4).

The Grand Challenge includes a two-stage evaluation [11].
The first stage was conducted on an emulation platform
where ground truth information is available, and the second
stage was conducted on an intercontinental testbed, where
audio/video calls are made between random pairs of nodes
that are geographically distributed across the globe. Our
proposed method ranked first in both stages and eventually
won the first prize of the Grand Challenge.

2 Data Processing
2.1 Dataset Description
The training and evaluation datasets provided by the Grand
Challenge are collected from audio/video peer-to-peer Mi-
crosoft Teams calls across the world. There are 18,859 ses-
sions in the training dataset and 9,405 sessions in the evalua-
tion dataset, and each session corresponds to one audio/video
call, containing thousands of sequences of the following
fields: (i) 150-dimensional observation, (ii) estimated band-
width from 6 different behavior policies, (iii) objective audio
quality, and (iv) objective video quality. The quality indicates
the Mean Opinion Score (MOS) ∈ [0, 5], with a score of 5
being the highest. The actual link capacity (also referred to
as the ground truth) of every sequence is provided in the
evaluation dataset. We use about 10% of the training dataset
to train our model (§2.3), use all the evaluation datasets to
evaluate our model (§4 and §5).

A 150-dim observation contains 15 metrics related to net-
work conditions and packet information, including receiving
rate, delay, packet jitter, packet loss ratio, audio/video packet

proportion, etc. Each metric has 10 values over the 5 most
recent 60ms short monitoring intervals (MIs) and the 5 most
recent 600ms long monitoring intervals. Detailed data de-
scription can be found in [11].

2.2 Missing Value Filling
At the beginning and end of each session, there is a portion
of transitions where the video quality values are missing (i.e.,
NaN). This is because there are no video data packets in the
link during these phases, resulting in undefined video quality.
Accordingly, three different methods have been attempted
to handle the missing values as follows:

(i) Trace clipping. We remove the data at the beginning of
these sessions, as well as the data at the end, where the video
quality is NaN. This ensures that only transitions with valid
audio and video quality throughout the session are retained
in the dataset.
(ii) Zero filling. Zero filling simply assigns these NaN re-

ward signals as 0.
(iii) Average filling. Average filling replaces NaN values

with the average of the valid reward signals of the entire tra-
jectory. With this approach, significant reward fluctuations
are avoided throughout the entire trajectory, and it helps
mitigate the model’s tendency to severely overestimate the
bandwidth at the beginning of a session. This approach also
helps model making the right decisions at the beginning of
a session.
While other methods could be considered, such as using

the audio quality to fill in the missing video quality, these
methods are not always feasible. In some cases, both video
and audio qualities may be missing. In addition, the distri-
butions of the two qualities are usually different. Therefore,
simply copying values from one to the other is inappropriate.

We eventually chose the average filling method to replace
missing values with an average value of all transitions, as
discussed in §5.1.

2.3 Training Set Splitting
In the training set of offline RL, the diversity of decision
policies significantly impacts the training effectiveness. The
provided training set includes a total of six different behavior
policies. Accordingly, we randomly select 300 sessions for
each policy type, resulting in a total of 1800 sessions to
compose the dataset used for training. Not all the available
sessions are utilized due to the constraint of GPU memory,
as discussed in §6.

3 Design
3.1 Learning Algorithm
Preliminaries. In RL, the process by which an agent in-
teracts with the environment is typically described as a
Markov Decision Process (MDP) < S,A, 𝑃, 𝑟, 𝜌0, 𝛾 >, where
S represents the set of states and A represents the set of
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actions; 𝑃 (·|𝑠, 𝑎) : S × A × S → [0, 1] represents the dy-
namic transition model, 𝑟 (𝑠, 𝑎) represents the reward func-
tion, 𝜌0 : S → [0, 1] is the initial state distribution, and
𝛾 ∈ [0, 1] is the discount factor. The goal of RL is to learn a
policy 𝜋 (𝑎 |𝑠) : S → A that maximizes the expectation of
the sum of discounted rewards, also known as the return:

max
𝜋

J𝜌0 (𝜋) = E𝑠∼𝜌0𝑎𝑡∼𝜋 (𝑠𝑡 ) [
∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠] . (1)

In offline RL, the agent can only use a pre-collected dataset
D = (𝑠, 𝑎, 𝑟, 𝑠′) for training and can not interact with the
environment to obtain new experiences.
Choice of the algorithm. Three representative offline

RL algorithms are off-the-shelf for our problem: (i) Twin
delayed deep deterministic policy gradient algorithm plus
behavior cloning (TD3_BC) [7], (ii) Conservative Q-Learning
(CQL) [13], and (iii) Implicit Q-Learning (IQL) [12].

TD3_BC is a policy-constrained method. It simply adds a
behavior cloning term to the policy update of an online RL
algorithm TD3 [8]. Different from the policy constraint in
TD3_BC, CQL places the penalty on the Q function (i.e., state-
action value function), which aims to learn a conservative Q
function such that the expected value of a policy under this
Q function lower bounds its true value. IQL is a representa-
tive of SARSA-type learning [24], implicitly approximating
policy improvement by treating the state value function as
a random variable. Though both TD3_BC and CQL allevi-
ate out-of-distribution (OOD) action sampling, their perfor-
mance still be harmed due to the potential distributional
shift [22]. In contrast, IQL utilizes expectile regression to
achieve the in-sample training, avoiding errors caused by
the distributional shift. Correspondingly, IQL is promising
to learn the Q function more accurately and obtain a better
final policy. Therefore, we choose the IQL algorithm to train
the model in this work. The evaluation results in §5.4 also
demonstrate the superior performance of IQL over the other
two algorithms.

IQL algorithm. IQL aims to approximate the value func-
tion 𝑉 (𝑠) : S → R and the state-action value function
𝑄 (𝑠, 𝑎) : S × A → R in the policy evaluation stage, and
obtain the final policy 𝜋 (𝑠) in the policy extraction stage.
In the policy evaluation stage, IQL uses the expectile re-

gression update method to approximate the optimal value
function 𝑉 (𝑠) with the asymmetric loss 𝐿𝜏2 . This can be
achieved by minimizing the following loss on 𝑉𝜓 (𝑠):

L𝑉 (𝜓 ) = E(𝑠,𝑎)∼D
[
𝐿𝜏2

(
𝑄
𝜃
(𝑠, 𝑎) −𝑉𝜓 (𝑠)

) ]
, (2)

where 𝐿𝜏2 (𝑢) = |𝜏 − 1(𝑢 < 0) |𝑢2 is an asymmetric 𝑙2 loss,
and 𝑄

𝜃
(𝑠, 𝑎) is the target state-action network. The state-

action value function 𝑄𝜃 (𝑠, 𝑎) is updated by minimizing the
temporal difference (TD) loss :

L𝑄 (𝜃 ) = E(𝑠,𝑎,𝑠′ )∼D
[ (
𝑟 (𝑠, 𝑎) + 𝛾𝑉𝜓 (𝑠′) −𝑄𝜃 (𝑠, 𝑎)

)2]
. (3)
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Figure 1. Structure of actor network

In the policy extraction stage, IQL minimizes the loss for
optimizing the final policy 𝜋𝜙 (𝑠) is:
L𝜋 (𝜙) = E(𝑠,𝑎)∼D

[
exp

(
𝛽
(
𝑄
𝜃
(𝑠, 𝑎) −𝑉𝜓 (𝑠)

) )
log𝜋𝜙 (𝑎 | 𝑠)

]
,

(4)
where 𝛽 ∈ [0,∞) is used to adjust the balance between
maximizing Q-values and behavioral cloning (BC) [27]. A
smaller 𝛽 makes the overall policy more biased toward BC,
while a larger 𝛽 tends to maximize the Q function.

3.2 State, Action and Reward
State. We use the original 150-dimensional observations
(§2.1) as our input state, keeping its information within the
past 5 short and 5 long MIs, so the input state naturally
has the temporal correlation information across the time
domain. Before being passed to the neural networks, all the
input features are normalized to facilitate the model training.
Specifically, all feature values are limited to [-10, 10]. For
example, the receiving rate is divided by 106.
Action. The model directly outputs the predicted band-

width as the action in each decision period. Note that the
output is also normalized, divided by 106.

Reward function. For each state-action pair, the dataset
provides the audio quality and video quality during each MI.
We set the reward function as the weighted sum of these two
qualities:

𝑟 (𝑠, 𝑎) = (2 − 𝛼)𝑞𝑎 + 𝛼 ∗ 𝑞𝑣, (5)
where 𝑞𝑎 is audio quality, 𝑞𝑣 is video quality, and 𝛼 ∈ [0, 2]
controls the weight of these two qualities, considering that
they may not equally contribute to the overall quality. A
detailed discussion on identifying 𝛼 is provided in §5.2.

3.3 Actor Network Architecture
The structure of the actor neural network in our proposed
method is illustrated in Figure 1. The input of each state is
a 150-dimensional normalized observation containing both
short-term and long-term temporal information. The input
is then fed into a fully connected (FC) layer with the size
of 150x256. Next, a Gated Recurrent Unit (GRU) [4] is intro-
duced to capture the internal temporal information in each
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state, inspired by Sage [31]. The output then passes through
another FC of size 256x256 before entering a Residual Block
[9], which mitigates the risk of gradient vanishing and pro-
motes the stability of the model’s performance. The tensor
output goes into the final FC of size 256x1. After applying
the 𝑡𝑎𝑛ℎ activation function, the output action represents
the predicted bandwidth in Mbps and is further multiplied
by 106 to convert to bps. Since 𝑡𝑎𝑛ℎ may output a negative
bandwidth value in [-1, 0), we use a clamp function to ensure
that the final prediction is not less than 10bps. For more
details, please refer to our open-source code.

3.4 Implementation
Our proposed method is implemented based on CORL [26],
an open-sourceOffline Reinforcement Learning library. Hyper-
parameters in the IQL algorithm are set as default in CORL,
i.e., 𝜏 = 0.7 (in 𝐿𝜏2 (𝑢), see Eq. 2) and 𝛽 = 3 (Eq. 4).

4 Evaluation
4.1 Setup
Performance metrics. The best metric to evaluate the per-
formance of our proposed method is the audio and video
quality. However, since the quality assessment model is not
available, it is not feasible for us to obtain the actual qual-
ity after each action. Therefore, we turn to evaluate the
prediction accuracy of our method. In general, accurate
bandwidth prediction is expected to ensure higher audio and
video quality [16, 25, 30].

Three metrics are selected to assess the prediction ac-
curacy of all methods, including (i) prediction error rate
[10, 25], (ii) overestimation rate [15], and (iii) mean-square
error (MSE). Generally, lower values for these three metrics
correspond to higher prediction accuracy.

The error rate is defined as follows:

𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒 =
1
𝑛

𝑛∑︁
𝑖=1

min(1, |�̂� − 𝐵 |
𝐵

), (6)

where 𝑛 is the total number of times the model is called in a
session, 𝐵 is the true bottleneck link bandwidth, and �̂� is the
model output, the predicted value of the link bandwidth.
The overestimation rate is a metric that assesses the de-

gree to which the model overestimates the true values of the
link, reflecting the model’s conservatism or aggressiveness
[15, 32]. Overestimating the link bandwidth may directly
lead to video rebuffering, while underestimation is relatively
safer, causing only a decrease in video quality. In comparison
to potential video rebuffering in RTC systems, a more con-
servative estimate is considered better. The overestimation
rate is defined as follows:

𝑜𝑣𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒 =
1
𝑛

𝑛∑︁
𝑖=1

max(0, �̂� − 𝐵

𝐵
). (7)

Finally,MSE is commonly used as the loss function in deep
learning methods and is defined as:

𝑚𝑠𝑒 =
1
𝑛

𝑛∑︁
𝑖=1

(�̂� − 𝐵)2 . (8)

Comparison schemes. We use one baseline model [20]
provided by the competition committee and six anonymous
behavior policies from the original trajectories to compare
with our model on the evaluation dataset.
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Figure 2. Performance of Our Model

4.2 Performance of Our Model
The performance of our final model on the evaluation dataset
is illustrated in Figure 2. In terms of the error rate, our model
did not surpass the performance of the behavior policy and
baseline. The over-estimated rates of the three models are
also similar, with our model slightly lower. However, when
considering the MSE, our model exhibits a much smaller
mean square error compared to the others, which is 18% and
22% lower than the baseline and behavior policy, respectively.

The two cases in Figure 3 present the superior prediction
performance of our model over the baseline and behavior
policies (Estimator v1 and Estimator v3). In the first case (Fig-
ure 3a), our model demonstrates the ability to make accurate
predictions when the behavior policy significantly overesti-
mates the link bandwidth. The baseline model follows the
behavior policy to maintain the large overestimation. In con-
trast, our model closely aligns with the true capacity. In the
second case (Figure 3b), the baseline tends to overestimate af-
ter the start-up phase. Under these circumstances, our model
leans towards alignment with the behavior policy, resulting
in more conservative and accurate predictions.

These results indicate that offline RL allows the model to
learn from other policies and further outperform the original
policies, as reported in [31]. Note that we do not claim that
our model is the best one in all scenarios, but it performs
well in most cases and achieves the best overall performance.
Further discussion is provided in §6.
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Figure 3. Cases of prediction trajectories where our model is more accurate

5 Ablation Study
5.1 Missing Value Filling Methods
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Figure 4. Performance of three different methods

In §2.2, three methods are considered to handle missing
values, where both zero filling and average filling are value-
replacement methods. Under the same training algorithm
and actor-network structure, the comparison results of these
three methods on the evaluation set are illustrated in Figure
4. Note that after average filling, the proportion of audio
quality and video quality in the reward function is equal.

From the results, average filling only has an advantage in
overestimation rate, but we still choose this method. This is
because, compared to the other two methods, it retains more
complete session information. On the one hand, zero filling
introduces a sudden change in the reward trajectory for the
entire session, where the undefined reward is simply taken
as the worst case (0). As a result, the model may mistakenly
consider "good" behavior to be "bad". On the other hand,
trace clipping drops all the missing data, making the model
unable to learn from actions at the beginning of sessions.

5.2 Weight 𝛼 in Reward Function
Eq. 5 incorporates a parameter𝛼 to adjust the weight of audio
and video quality. We evaluate the prediction performance
of our model under different settings of 𝑎𝑙𝑝ℎ𝑎, ranging from
1.0 to 2.0. As depicted in Figure 5, 𝛼 = 1 causes the highest
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Figure 5. Results of Different 𝛼 Values

error rate of 0.54. On the other hand, 𝛼 = 2 produces the
highest MSE (2.92). Therefore, we finally chose 𝛼 = 1.5 for
training because it demonstrated the lowest error rate and
MSE.
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Figure 6. Three different NN architectures

5.3 Actor Network Structure
TheNN architecture of the actor is initially designedwith just
three FC layers. Here, we conduct the following experiments
to verify the effectiveness of incorporating GRU and Residual
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Blocks. There are four different design choices, including: (i)
only three FC layers (Figure 6a), (ii) three FC layers with GRU
(Figure 6b), (iii) three FC layers with two Residual Blocks
(Figure 6c), and (iv) the final adopted architecture, namely
three FC layers with GRU and Residual Blocks, as shown in
Figure 1.

Figure 7 presents the evaluation results of four correspond-
ing models. It can be seen that our proposed architecture
achieves the lowest error rate (0.3) and MSE (2.64). Remov-
ing GRU or Residual Blocks leads to worse prediction per-
formance. Therefore, the actor architecture of our model is
necessary for accurate prediction.
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5.4 Offline RL Algorithms
Finally, we study the choice of the training algorithm by eval-
uating the performance of models based on three different
algorithms (§3.1): TD3_BC, CQL, and IQL. These evaluations
are performed under consistent conditions (i.e., the same
training set and input features). As illustrated in Figure 8,
the model trained using IQL outperformed the others in
terms of all metrics, indicating that IQL is more suitable for
training bandwidth prediction models.

6 Limitations
As noted in the Grand Challenge result [11], our model per-
forms well in high-bandwidth, burst-loss, and fluctuating-
burst-loss scenarios, but can still be improved in low-bandwidth

and fluctuating-bandwidth scenarios. Here, we list possible
directions to improve our model further.
Dataset. Out of a total of 18,860 sessions, only 1,800 ses-

sions are used for training due to the hardware constraints
(e.g., GPU memory size) in our training environment. Be-
sides, we simply apply random sampling in constructing the
training set, but it might be better to consider the network
and reward distributions. While the diversity in policy types
is ensured, our training set may not represent all states of
the video streaming system. Therefore, the performance of
our method could be further improved by utilizing more data
more carefully. We leave this point as the future work.
Feature engineering. The provided dataset consists of

a total of 15 input features. Each feature has 10 numerical
values, varying in the length of the monitor interval. We
directly use all features in their original form as the input to
our model. However, feature engineering techniques can be
applied, which require further research.

7 Conclusion
Real-time communication (RTC) video streaming relies on
accurate bandwidth prediction to optimize QoE for users.
State-of-the-art learning-based methods leverage online rein-
forcement learning (RL) or imitation learning (IL) algorithms,
relying on interacting with the environment in the training
process. This nature poses challenges to training and deploy-
ing learning-based models in real-world RTC systems.
To address this issue, this paper proposes an offline-RL-

based bandwidth prediction method. Specifically, based on
a representative algorithm IQL, we redesign the neural net-
work structure and the reward function. Extensive evalua-
tions demonstrate the design choices and predictive perfor-
mance of our model. Specifically, our model reduces 18%-22%
MSE compared to both the baseline and six behavior policies.

Acknowledgments
We thank the anonymous reviewers for their insightful feed-
back. This work was supported in part by the National Key
R&D Program of China (2022YFB2901800) and Natural Sci-
ence Foundation of China (U20A20180, 62072437).

References
[1] Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, An-

ish Agarwal, Mohammad Alizadeh, and Devavrat Shah. 2023.
{CausalSim}: A Causal Framework for Unbiased {Trace-Driven} Sim-
ulation. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). 1115–1147.

[2] Chandan Bothra, Jianfei Gao, Sanjay Rao, and Bruno Ribeiro. 2023.
Veritas: Answering causal queries from video streaming traces. In
Proceedings of the ACM SIGCOMM 2023 Conference. 738–753.

[3] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo.
2017. Congestion control for web real-time communication. IEEE/ACM
Transactions on Networking 25, 5 (2017), 2629–2642.

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. 2014. Empirical evaluation of gated recurrent neural networks

386



Accurate Bandwidth Prediction for Real-Time Media Streaming with Offline Reinforcement Learning MMSys ’24, April 15–18, 2024, Bari, Italy

on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).
[5] Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee, Dirk Grunwald,

and Sangtae Ha. 2023. Converge: Qoe-driven multipath video con-
ferencing over webrtc. In Proceedings of the ACM SIGCOMM 2023
Conference. 637–653.

[6] Xing Fang, Qichao Zhang, Yinfeng Gao, and Dongbin Zhao. 2022.
Offline reinforcement learning for autonomous driving with real world
driving data. In 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 3417–3422.

[7] Scott Fujimoto and Shixiang Gu. 2021. A Minimalist Approach to Of-
fline Reinforcement Learning. In Advances in Neural Information Pro-
cessing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (Eds.). https://openreview.net/forum?id=Q32U7dzWXpc

[8] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing Func-
tion Approximation Error in Actor-Critic Methods. In International
Conference on Machine Learning. 1582–1591.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Iden-
tity mappings in deep residual networks. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14. Springer, 630–645.

[10] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness,
efficiency, and stability in http-based adaptive video streaming with
festive. In Proceedings of the 8th international conference on Emerging
networking experiments and technologies. 97–108.

[11] Sami Khairy, Gabriel Mittag, Scott Inglis, Vishak Gopal, Mehrsa
Golestaneh, Ross Cutler, Francis Yan, and Zhixiong Niu. 2024. ACM
MMSys 2024 Bandwidth Estimation in Real Time Communications
Challenge. arXiv:2403.06324 [cs.NI]

[12] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint arXiv:2110.06169
(2021).

[13] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine.
2020. Conservative Q-Learning for Offline Reinforcement Learning.
arXiv:2006.04779 [cs.LG]

[14] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020.
Offline Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv preprint arXiv:2005.01643 (2020).

[15] Gerui Lv, Qinghua Wu, Yanmei Liu, Zhenyu Li, Qingyue Tan, Furong
Yang, Wentao Chen, Yunfei Ma, Hongyu Guo, Ying Chen, and Gaogang
Xie. 2024. Chorus: Coordinating Mobile Multipath Scheduling and
Adaptive Video Streaming. In The 30th Annual International Conference
on Mobile Computing and Networking. 1–17.

[16] Gerui Lv, Qinghua Wu, Weiran Wang, Zhenyu Li, and Gaogang Xie.
2022. Lumos: Towards better video streaming qoe through accurate
throughput prediction. In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 650–659.

[17] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streamingwith pensieve. In Proceedings of the conference
of the ACM special interest group on data communication. 197–210.

[18] Zili Meng, Xiao Kong, Jing Chen, Bo Wang, Mingwei Xu, Rui Han,
Honghao Liu, Venkat Arun, Hongxin Hu, and Xue Wei. 2024. Hairpin:
Rethinking Packet Loss Recovery in Edge-based Interactive Video
Streaming. In USENIX NSDI.

[19] Microsoft. 2024. https://www.microsoft.com/en-us/research/
academic-program/bandwidth-estimation-challenge/.

[20] Microsoft. 2024. https://github.com/microsoft/
RL4BandwidthEstimationChallenge/tree/main/onnx_models.

[21] WebRTC project. 2024. https://webrtc.org/. Accessed: 2024-02-03.
[22] Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna

Colombini. 2023. A survey on offline reinforcement learning: Taxon-
omy, review, and open problems. IEEE Transactions on Neural Networks
and Learning Systems (2023).

[23] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Anantha-
narayanan, Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss

recovery for videoconferencing via streaming codes. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 953–971.

[24] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning
using connectionist systems. Vol. 37. University of Cambridge, Depart-
ment of Engineering Cambridge, UK.

[25] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving video bi-
trate selection and adaptation with data-driven throughput prediction.
In Proceedings of the 2016 ACM SIGCOMM Conference. 272–285.

[26] Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav
Kurenkov, and Sergey Kolesnikov. 2023. CORL: Research-oriented deep
offline reinforcement learning library. Advances in Neural Information
Processing Systems 36 (2023).

[27] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral
cloning from observation. arXiv preprint arXiv:1805.01954 (2018).

[28] Haiping Wang, Zhenhua Yu, Ruixiao Zhang, Siping Tao, Hebin Yu,
and Shu Shi. 2023. TwinStar: A Practical Multi-path Transmission
Framework for Ultra-Low Latency Video Delivery. In Proceedings of
the 31st ACM International Conference on Multimedia. 9234–9242.

[29] Jiangkai Wu, Yu Guan, Qi Mao, Yong Cui, Zongming Guo, and Xing-
gong Zhang. 2023. ZGaming: Zero-latency 3D cloud gaming by image
prediction. In Proceedings of the ACM SIGCOMM 2023 Conference. 710–
723.

[30] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: a randomized experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). 495–511.

[31] Chen-Yu Yen, Soheil Abbasloo, and H Jonathan Chao. 2023. Computers
Can Learn from the Heuristic Designs and Master Internet Congestion
Control. In Proceedings of the ACM SIGCOMM 2023 Conference. 255–
274.

[32] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
control-theoretic approach for dynamic adaptive video streaming over
HTTP. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication. 325–338.

[33] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping
Wang, Xinyu Zhang, Huadong Ma, Leilei Wu, Aiyun Chen, and
ChanghuiWu. 2021. Loki: improving long tail performance of learning-
based real-time video adaptation by fusing rule-based models. In Pro-
ceedings of the 27th Annual International Conference on Mobile Com-
puting and Networking. 775–788.

[34] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu,
Cong Li, Xinyu Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL:
improving mobile video telephony via online reinforcement learning.
In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1–14.

[35] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma,
Zhen Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang
Chen. 2019. Learning to coordinate video codecwith transport protocol
for mobile video telephony. In The 25th Annual International Conference
on Mobile Computing and Networking. 1–16.

387

https://openreview.net/forum?id=Q32U7dzWXpc
https://arxiv.org/abs/2403.06324
https://arxiv.org/abs/2006.04779
https://www.microsoft.com/en-us/research/academic-program/bandwidth-estimation-challenge/
https://www.microsoft.com/en-us/research/academic-program/bandwidth-estimation-challenge/
https://github.com/microsoft/RL4BandwidthEstimationChallenge/tree/main/onnx_models
https://github.com/microsoft/RL4BandwidthEstimationChallenge/tree/main/onnx_models
https://webrtc.org/

	Abstract
	1 Introduction
	2 Data Processing
	2.1 Dataset Description
	2.2 Missing Value Filling
	2.3 Training Set Splitting

	3 Design
	3.1 Learning Algorithm
	3.2 State, Action and Reward
	3.3 Actor Network Architecture
	3.4 Implementation

	4 Evaluation
	4.1 Setup
	4.2 Performance of Our Model

	5 Ablation Study
	5.1 Missing Value Filling Methods
	5.2 Weight α in Reward Function
	5.3 Actor Network Structure
	5.4 Offline RL Algorithms

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

