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Abstract
Mobile e-commerce platforms increasingly integrate cloud

rendering to deliver immersive 3D shopping experiences,
where users interact with the rendered scenes through the net-
work. Our large-scale online measurements reveal that users’
Quality of Experience (QoE) preferences dynamically evolve
with user motions in cloud rendering sessions. However, la-
tency spikes occur more frequently during peak periods of
user engagement, resulting in early session abandonment. To
address this issue, we propose MARC, a motion-aware rate
control framework that aligns bitrate decisions with user QoE
preferences in real-time. MARC sets dynamic QoE objectives
based on real-world user engagement behavior, captures the
different latency and quality requirements for motion and
non-motion frames, and employs stochastic optimization to
maximize QoE. Extensive deployment of over 1 million user
sessions demonstrates that MARC reduces session freeze rates
by 71% and increases user interaction time by 20%, signif-
icantly improving user engagement for e-commerce cloud
rendering.

1 Introduction

As mobile e-commerce continues to flourish, an increasing
number of merchants are turning to 3D rendering to deliver
immersive product experiences [22,41,50]. By enabling users
to interact with high-fidelity 3D models in real-time on their
local devices, these technologies increase user engagement
and purchase conversions [5, 67]. However, rendering 3D
content locally requires substantial computing power, which
conflicts with the limited performance and battery capacity of
mobile devices. Additionally, downloading high-fidelity mod-
els imposes significant storage requirements and introduces
considerable loading times. Cloud rendering has emerged
as an attractive solution by offloading the computationally
intensive rendering tasks to powerful remote servers and trans-
mitting only the resulting video frames to the user. As a result,
cloud rendering reduces the client’s processing load and im-
proves the overall user experience.

A key determinant of this user experience is the balance
between motion-to-photon (MTP) latency and visual quality.
Increasing the bitrate improves quality, but can also inflate
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Figure 1: Architecture of the cloud rendering system. User
behavior, including engage (motion) and inspect (non-motion)
actions, follows an on-off pattern.

MTP latency by causing network congestion. To this end,
cloud rendering systems often use real-time communication
(RTC) protocols such as WebRTC [6, 45]. Central to such
systems is the rate controller [20, 37, 68], which adjusts the
encoding bitrate based on estimated network bandwidth.

Although the cloud rendering system (Fig. 1) shares a sim-
ilar technical framework with cloud gaming [53, 60, 69], our
measurement on Taobao’s mobile cloud rendering platform
involving more than 100,000 users reveals unique QoE re-
quirements for cloud rendering (§ 2.2). The results indicate
that even with advanced optimization techniques, users ex-
perience excessively high latency precisely when they are
most actively engaged, leading to early session abandonment.
Specifically, user behavior follows an on-off pattern, alternat-
ing between “motion” phases (e.g., rotating or zooming in
on a 3D product) and “non-motion” phases (e.g., inspection
without manipulation). During motion phases, when users are
most sensitive to high latency, video frames tend to be larger
(22% on average) and tail latency increases significantly (1.9
times higher at the 99th percentile). Nevertheless, existing
rate controllers, which use the same decision logic for both
motion and non-motion phases, fail to distinguish between the
different behaviors and QoE preferences of the two. There-
fore, these solutions cannot optimize QoE for cloud rendering
systems (§ 2.3).

Our observations highlight a key insight: QoE requirements
change dynamically with user motion, necessitating "motion-
aware" rate control strategies. Despite its simplicity, translat-
ing this insight into a practical system presents several design
challenges:

(i) Mapping user engagement to QoE preference. As
observed in § 2.2, users prioritize low latency over high quality
during motion phases, characterized by user engagement (e.g.,
session duration) decreasing more rapidly as latency increases.



However, how to quantify this human-involved engagement
pattern as a guideline for rate control remains unclear.

(ii) Striking a dynamic balance in bitrate adaptation.
The primary challenge in rate control is resolving the conflict
between minimizing latency and maximizing quality under
network dynamics. In addition, our measurements show that
user behavior introduces QoE preference dynamics. These
two types of system dynamics make it much more difficult to
optimize QoE in e-commerce cloud rendering.

(iii) Enabling frame-level fine-grained decision. Since
user behavior exhibits an on-off pattern across frames, the
rate controller must operate at the frame level, e.g., within
33.3 ms at a frame rate of 30 fps. This requirement imposes a
severe time constraint on the decision logic.

To address the above challenges, we propose MARC, a dy-
namic QoE-driven Motion-Aware Rate Control framework
for e-commerce cloud rendering. MARC sets a dynamic QoE
objective function, which derives the importance of motion
and non-motion frames directly from our measurements of
user engagement as QoE preferences. MARC further mod-
els the dynamic QoE evolution of multiple future frames and
utilizes stochastic optimization techniques to maximize cumu-
lative QoE. In doing so, MARC incorporates a state predictor
to predict user behavior and network conditions. Furthermore,
MARC employs an efficient gradient-based method to deter-
mine the bitrate at the frame level.

We have implemented MARC in the WebRTC frame-
work and deployed it in our real-world system. Extensive
experiments based on simulation and large-scale A/B tests
involving over 1 million user sessions demonstrate that
MARC outperforms the state-of-the-art RTC rate control meth-
ods [6,26,28,48]. Specifically, compared to baselines, MARC
reduces the tail send duration and queueing latency for motion
frames by 30% to 55%, tail frame latency by 22% to 60%,
and session freeze rate by 71%. MARC also improves user
engagement, with session durations increasing by 9% and
interaction rates (i.e., the ratio of motion frames in all frames)
rising by 20%. Moreover, MARC incurs no overhead on the
client side and adds only a modest 1.3% CPU usage per ses-
sion on the server side. These results confirm that MARC can
achieve effective bitrate control in large-scale e-commerce
cloud rendering systems.

To summarize, the main contributions of this paper are:

• Identifying unique dynamic QoE requirements that evolve
with user motion in e-commerce cloud rendering through
a large-scale measurement study;

• Proposing a dynamic QoE-driven motion-aware rate con-
trol framework MARC, which integrates user-behavior
modeling and multi-frame QoE optimization;

• Implementing MARC in production, ensuring frame-level
bitrate adaptation under strict time constraints;

• Extensively evaluating MARC in a real-world cloud ren-
dering system and demonstrating its efficiency.

Claim: This work does not raise any ethical issues. All
data collected in this research are desensitized and include
performance-related information only.

2 Background and Motivation

2.1 Background: Cloud Rendering in Mobile
E-commerce Applications

Cloud rendering is an emerging technology adopted by
e-commerce platforms to deliver interactive 3D visuals on
mobile devices [22, 41, 50]. This technology increases user
engagement by allowing users to interact with their favorite
products and avatars in real-time, potentially boosting the
revenue of e-commerce companies [5, 67].

Cloud rendering system architecture. A typical cloud
rendering architecture is illustrated in Fig. 1. The mobile
device acts as the client, capturing user motions for the server.
Here, motion denotes intentional interaction events such as
tap, pinch-to-zoom, or drag gestures that generate explicit
control commands. The cloud server deploys a powerful 3D
rendering engine (e.g., Unreal Engine [14]) to generate high-
quality 3D graphics, which are then compressed into a video
stream and transmitted to the client for playout. Inside the
server, the encoder converts the rendered graphics into video
frames that are further packaged into media packets. These
packets are queued at the pacer, awaiting transmission over
the network. The pacer follows the transport rate set by the
congestion controller (e.g., GCC [6], Copa [3], Pudica [53],
or SQP [48]), which estimates available bandwidth to avoid
network congestion. The rate controller decides the target
encoding bitrate based on the bandwidth estimation from the
congestion controller.

Rate control for real-time communications. Video rate
control significantly affects user experience [10, 68]. While
higher bitrates can improve video quality and thus user sat-
isfaction [10], they may result in increased latency due to
inflating the send queue, especially when a sudden drop in
bandwidth causes the encoder’s output rate to surpass the
transmission rate. To maintain low latency, current encoder
rate controllers typically reserve a fixed portion of the avail-
able bandwidth as headroom. For example, commercial in-
teractive video applications set the target bitrate 11% to 28%
lower than the estimated bandwidth [28], which, however,
sacrifices video quality. Therefore, video rate control must
be carefully designed to balance quality and latency, which
further relies on a deep understanding of the relationship be-
tween these QoE metrics and user engagement.

2.2 Characterizing User Behavior and QoE
Preferences in the Wild

To investigate how the above QoE metrics affect user en-
gagement in real-world cloud rendering systems, we conduct
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Figure 2: Large-scale QoE study: Relationship between QoE
metrics and session duration.

a large-scale QoE study on Taobao’s mobile cloud rendering
platform.

System setup. Our cloud rendering system allows users
to dress up their 3D avatars, create dresses, and change back-
ground scenes. The server employs Unreal Engine (UE) [14]
to render 3D graphics and leverages Pixel Streaming [15],
a UE plugin, to stream these graphics to the client via We-
bRTC [45]. We use WebRTC because it is the de facto in-
frastructure for real-time video streaming [21] and is widely
supported by major web browsers and platforms [58], facili-
tating large-scale production deployments. When users access
the service, they are assigned to the nearest rendering server
and then connected by WebRTC. Users can interact with the
virtual characters on the screen, and their actions (e.g., mo-
tions like zooming in and out or changing viewpoints) are
sent to the server via the WebRTC Datachannel using the
SCTP [1].

Video encoding. Following common practice [34], our sys-
tem operates at a fixed video resolution of 1560x720 with a
frame rate of 30 fps and a maximum bitrate of 8 Mbps. The
encoder works in CBR (constant bitrate) mode. We employ
an infinite Group of Pictures (GOP) size, resulting in 99.9%
of the frames being P-frames (non-keyframes). P-frames rely
on preceding frames for decoding, which reduces redundancy
and ensures efficient compression. Only 0.1% of the frames
are I-frames (keyframes), which typically appear at the start
of the session to initialize decoding. The stream is encoded
in H.264 format, which is preferred for its superior decod-
ing performance and energy efficiency, leveraging client-side
hardware decoders.

Incorporating advanced optimization. Our cloud ren-
dering system shares a similar technical infrastructure with
cloud gaming [53, 60, 69]. Therefore, this system uses the
same cutting-edge optimization techniques as cloud gam-
ing. Specifically, edge servers strategically deployed near
users [60], equipped with industry-leading hardware en-
coders [39] that support ultra-low latency and constant bitrate
encoding modes [2]. The online configuration also includes
pacing-based sending [56] (discussion in § 6) and forward

error correction (FEC) [4]. Furthermore, the RTC framework
incorporates the standard low-latency congestion control algo-
rithm and rate controller [6], as well as innovative client-side
buffer management [67].

Measurement methodology. We measure user engage-
ment by two behavioral interaction metrics [42]: (i) session
duration, which quantifies how much time a user spends on
the service in a session; and (ii) motion phase duration, which
is equal to the total duration of motion frames. A frame is
marked as a motion frame whenever the server receives a user
motion command from the client (see § 4.1 for details). There-
fore, each motion phase contains a single frame or a series
of consecutive motion frames1. In addition, other frame-level
metrics are also collected, including the target bitrate, actual
frame size, and send duration (the time taken from sending
the first packet to sending the last packet of the frame). All
metrics are collected on the server side and do not include
any user-related or content-related information.

Dataset description. The measurement spanned from
February 23 to March 27, 2024, covering 1.8 billion frames
across 200,846 sessions, accumulating over 16,000 hours of
video, and involving more than 100,000 users. To the best of
our knowledge, this dataset represents the first large-scale and
comprehensive measurement of a real-world cloud rendering
system, uniquely capturing both video stream metrics and
complex user motion behavior. By analyzing the dataset, we
have made the following observations.

Observation 1: In motion phases, frame latency has a
greater impact on user engagement than bitrate.

We first focus on the relationship between QoE metrics
(i.e., frame latency and bitrate) and user engagement in both
the motion and non-motion phases, as illustrated in Fig. 2,
where translucent areas represent 95% confidence intervals.

(i) Frame latency. It is defined as the time it takes for
a frame to be sent from the server to be fully received by
the client, namely the send duration plus the one-way delay
(OWD), where OWD is estimated as half the round-trip time
(RTT) on the server side. Although MTP latency also includes
components from the rendering engine and client side, prior
work [67] and our measurements indicate that client-side
optimizations reduce its contribution to only 22% of total
MTP. Consequently, the frame latency remains the dominant
contributor.

In Fig. 2a, the trend lines represent linear regressions of
the session duration data. It can be seen that session duration
decreases as latency increases, which is consistent with the
previous studies [53]. Additionally, the slope of the trend line
is 75.7% steeper in motion phases than in non-motion phases.
Looking deeper, increasing the latency of motion frames con-
sistently decreases session duration. In contrast, once the
latency of non-motion frames reaches a certain point (i.e., 42
ms in Fig. 2a), the session duration remains relatively stable.

1We have excluded single-frame user motions in our analysis to avoid the
interferences from users’ unconsciously tapping on the screen.
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Figure 3: The on-off pattern of user motions.
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Figure 4: The probability distribution of consecutive
motion/non-motion frames.

These results suggest that users are much more sensitive to
the high latency of motion frames.

(ii) Frame bitrate. As shown in Fig. 2b, session dura-
tion increases with frame bitrate. Overall, the slope is 37.8%
steeper in motion phases than in non-motion phases. However,
it is worth noting that when the frame bitrate is high enough
(i.e., over 5 Mbps), session duration is hardly affected by user
motion.

Observation 2: User behavior exhibits an “on-off” pat-
tern, with short “on” (motion) and long “off” (non-motion)
periods.

Fig. 3 illustrates the “on-off” pattern of user behavior,
where the “on” phase indicates successive motion frames
while the “off” phase corresponds to the intervals between
non-motion frames. Fig. 4 depicts the duration distribution of
motion and non-motion phases. Motion phases are relatively
short: 74% of them last 2-4 frames, while 15% last 5-9 frames
(Fig. 4a). A non-motion phase may appear between two ad-
jacent motion phases. 70% of non-motion phases are brief
pauses (no more than 15 frames, i.e., 0.5 seconds), and 30%
are prolonged stops (over 15 frames), as shown in Fig. 4b.
This behavior pattern is typical in e-commerce applications,
where users frequently change viewpoints and then pause to
view their avatars or products.

Observation 3: Despite the same target bitrate given by
the rate controller, motion frames tend to have larger sizes
and longer send durations than non-motion frames.

As defined, frame latency contains the send duration and
OWD. In cloud rendering systems, OWD is typically very low,
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Figure 5: Send duration and frame size distributions for mo-
tion and non-motion frames. Motion increases the tail frame
size and the send duration.

with a 95th percentile of only 29.5 ms in our measurements.
This result is consistent with previous studies [60, 61], which
can be explained by the fact that servers are edge-deployed
and thus close to users. Nevertheless, the send duration is
significantly longer, with a 95th percentile of 59 ms, which
is 2 times the OWD. Therefore, we next examine the send
duration, which is directly affected by the rate controller.

As shown in Fig. 3, the send duration generally increases
with the actual frame size, which is different for motion and
non-motion frames. The statistical results in Fig. 5 further
support this intuition. Fig. 5a shows that the send duration of
motion frames is consistently longer than that of non-motion
frames after the 50th percentile (P50). In particular, the P99
send duration of motion frames can reach up to 82 ms, which
is 1.9 times longer than that of non-motion frames, resulting
in significant latency during motion phases.

Essentially, the root cause of increased send duration during
motion phases is that motion frames tend to generate more
data than expected. As a result, the actual bitrate of motion
frames is more likely to exceed the congestion controller’s
pacing rate, causing packets to queue up at the sender and
ultimately increasing the send duration. Fig. 5b indicates
that motion frames are significantly larger than non-motion
frames after the P50. Remember that both motion and non-
motion frames use CBR encoding, and most of them are not
keyframes. Therefore, the difference in their sizes is because
motion frames have more variable content and require more
bits to encode2, as reported in previous work [47]. Notably,
packet loss is not the main factor affecting send duration.
Even in no-loss (NL) sessions, the tail (P99) send duration of
motion frames can still reach 72 ms, which is 87.8% of the
82 ms in packet-loss sessions.

Unfortunately, existing rate controllers use the same deci-
sion logic to determine the target bitrate for both motion and
non-motion frames, and thus cannot distinguish between their
different behaviors and QoE requirements.
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2.3 Pitfalls of Existing Rate Controllers

We provide a case study to illustrate how existing solutions
fail to optimize QoE in the cloud rendering system due to
ignorance of user motion.

Existing rate controllers typically use a fixed portion of esti-
mated available bandwidth as video bitrate [28]. Two baseline
strategies are considered in this controlled experiment (details
in § 5.1): (i) Latency-First strategy, which allocates 72% of
bandwidth as video bitrate (based on the measurement of a
commercial video application in [28]); and (ii) Quality-First
strategy, which uses 95% of bandwidth as video bitrate (an
estimated value of GCC’s [6] decision).

We also introduce our proposed method MARC (§ 3) as a
comparison. To eliminate the effect of network conditions, we
feed all strategies with the exact future bandwidth in the trace.
In addition, all strategies begin with the same state, including
user motion sequences and an initial sender buffer length of
15 KB (implying that a packet queue already exists on the
sender). The performance is evaluated based on both bitrate
allocation and frame queuing latency. Frame queuing latency
is affected by the send duration of previous frames, referring
to the time a frame spends waiting in the send queue before it
is transmitted.

2However, this issue cannot be directly solved by modifying the video
encoder, as discussed in § 6.

Fig. 6 illustrates the decision-making traces of these strate-
gies. Note that frames #0 and #1 are motion frames. The
Quality-First strategy outputs frames at higher bitrates and
therefore struggles to drain the send queue quickly, especially
when bandwidth suddenly drops (frame #2). On the other
hand, the Latency-First strategy reduces queuing latency but
does not effectively utilize the available bandwidth. While
the queue is empty (frame #2), the Latency-First strategy still
outputs low-level bitrates that reduce perceived quality.

Unlike the above, MARC maintains awareness of user mo-
tion. If the queueing latency is high, MARC timely reduces the
bitrate/bandwidth ratio for motion frames (frames #0 and #1).
Otherwise, for non-motion frames with low queueing latency,
MARC chooses higher bitrates to improve quality (frames #2
to #5). As a result, MARC achieves the best balance between
latency control and bandwidth utilization. Fig. 7 shows that
compared to the Latency-First strategy, MARC improves the
average bitrate by 26.1% for a similar average latency (2.5%
higher). MARC also reduces queueing latency by 59.2% over
the Quality-First strategy with only a 4.5% bitrate reduction.

2.4 Implications for Video Rate Control

As described above, we have identified characteristics of
user behavior and factors that impact user engagement in
mobile e-commerce cloud rendering systems. All three obser-
vations have important implications for rate control:

Requirement 1: Awareness of user motion. Users are
more sensitive to the latency of motion frames (Observation
1). Hence, the rate controller should be able to sense the
motion phase, in order to dynamically adjust the bitrate based
on the user’s preferences.

Requirement 2: Frame-level decision. Observation 2 indi-
cates that the duration of the motion phase is typically short.
Consequently, a fine-grained, frame-level rate control mecha-
nism is essential to swiftly adapt to the short motion intervals
and avoid unnecessary quality reductions or latency buildups.

Requirement 3: Differentiated bitrate assignment. Given
that motion frames are generally larger than non-motion
frames (Observation 3), the rate controller should assign lower
bitrates to motion frames to avoid excessive latency.

Summary. The technical framework of e-commerce cloud
rendering system seems similar to that of mobile cloud gam-
ing [18, 53], which typically needs a consistently low latency
of 50 ms to 150 ms [9, 23] for all video frames. However, our
large-scale QoE study reveals that the QoE requirements of
cloud rendering are quite unique. Specifically, a cloud render-
ing session can be divided into alternating motion and non-
motion phases. Users’ QoE preferences differ significantly
in these two phases. Therefore, the rate controller should be
motion-aware to optimize dynamic QoE objectives. Unfortu-
nately, existing solutions [8,26,28,48] overlook this principle,
which motivates our work in this paper.
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3 MARC System Design

Based on our insights in § 2, we propose a Motion-Aware
Rate Controller (MARC) for mobile e-commerce cloud ren-
dering systems. MARC aims to maximize QoE by controlling
the video encoding bitrate based on dynamic user preferences
for quality and latency.

3.1 System Overview

Fig. 8 illustrates the high-level system architecture of
MARC, which integrates several key components. First, the
Dynamic QoE Optimizer (§ 3.5) determines the video bi-
trate on a per-frame basis, leveraging our time-based sending
model (§ 3.3) and dynamic QoE objectives (§ 3.4). Second,
the State Predictor (§ 3.6) provides short-horizon forecasts
of user motion, pacing rate, and propagation delay.

Together, these components fulfill the three design require-
ments identified in § 2.4. Specifically, MARC is aware of user
motion and makes frame-level decisions to optimize dynamic
QoE preferences according to different user behaviors.

3.2 Mapping User Engagement to QoE Prefer-
ence

Our analysis derives frame importance based on detailed
online user interaction observations. We measure user en-
gagement via session duration and study its relationship with
latency and visual quality (bitrate). Specifically, we bin frames
by latency/bitrate ranges, compute the average session dura-
tion in each bin, and then perform linear regressions separately
for motion and non-motion frames, see Fig. 2.

Key findings. We observe that motion frames ex-
hibit higher sensitivity to latency, with a slope ratio
(non-motion : motion) ≈ 1 : 1.757. Similarly, they also show
moderately higher sensitivity to quality (1 : 1.378). This in-
dicates that minimizing latency is particularly critical during
motion phases, while maintaining adequate quality remains
important for overall engagement.
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Figure 9: The relationship of frame enqueue time t(i), frame
departure time t(i)′, and avg. pacing rate C(i).

3.3 Time-Based Formulation for Frame Send-
ing Process

Our frame-level model captures the entire process from
frame generation to transmission, accounting for encoding
decisions, queuing, and transmission.

Frame generation and encoding. Video frames are gen-
erated at a nearly constant interval (e.g., 33 ms at 30 fps),
denoted as I. For the i-th encoded frame, the encoding bitrate
Ri is defined as Eq. (1). The encoded frame size is denoted by
d(Ri). Unlike typical VoD or live streaming scenarios [63,68]
that have a set of discrete bitrates, MARC operates over a
continuous bitrate space.

Ri ∈ R , ∀i = 1, · · · ,N. (1)

In our implementation, we empirically derive d(Ri) by
performing separate linear regressions for motion and non-
motion frames, based on real encoder output data. This ap-
proach more accurately captures the typically larger size of
motion frames for the same bitrate, while still preserving a
continuous domain for optimization.

Queuing and transmission. Fig. 9 illustrates the queueing
and transmission process. The encoded frame(i) is packetized
and added to the transmission queue, where the queue length
is b(i). We mark the moment of enqueueing as time t(i). The
frame(i) waits in the send queue until the previously queued
packets have been transmitted. The time when the frame(i)
finishes sending is marked as t(i)′. The duration from t(i)
to t(i)′, denoted as s(i), corresponds to an average pacing
rate C(i) as defined in Eq. (4). This process is formulated in
Eq. (2) and (3).

t(i)′ = t(i)+ s(i) (2)

s(i) =
b(i)+d(Ri)

C(i)
(3)

C(i) =
1

t(i)′− ti

∫ t(i)′

ti
Ctdt, (4)

Buffer state dynamics. We formulate send-buffer evolu-
tion by modeling the residual queue length b(i), as shown in



Eq. (5). Here, (x)+ means max(x,0), ensuring a non-negative
queue size.

b(i) =
(

b(i−1)+d(Ri−1)−
∫ ti

ti−1

Ctdt
)
+

(5)

Total frame latency. The total frame latency includes queu-
ing delay, send duration, and network propagation latency
(denoted as OWD(i)) as defined in Eq. (6). Note that this
differs from the “frame latency” defined in § 2, which does
not account for queueing delay.

L(i) = OWD(i)+ s(i) (6)

3.4 Dynamic QoE Objective Function
Based on the linear regression slopes in § 3.2, we normalize

the base non-motion quality weight to 1.0, then we derive
a motion-to-non-motion latency ratio of 1.275 (i.e., 1.757

1.378 ).
Concretely, for each frame i, we define:

QoE(i) = qR
(
Ri
)
− γ(i) ·qL

(
L(i)

)
,

where qR(·) and qL(·) are the respective quality and latency
scoring functions. The latency penalty coefficient γ(i) de-
pends on whether the frame is non-motion (M(i) = 0) or
motion (M(i) = 1):

γ(i) =

{
1 if M(i) = 0
1.275 if M(i) = 1

(7)

Equivalently, we may write γ(i) = λs +M(i) ·λm with λs = 1
and λm = 0.275. (The impact of the two parameters is evalu-
ated in § 5.2.)

To capture overall QoE across N consecutive frames, we
sum the single-frame QoE as in Eq. (8):

QoEN
1 =

i=N

∑
i=1

qR(Ri)−
i=N

∑
i=1

(λs +M(i)×λm)×qL(L(i)) (8)

This formulation dynamically places more weight on latency
reduction in motion frames, aligning with users’ observed
engagement patterns.

3.5 Maximizing QoE with Stochastic Optimiza-
tion

Given the constraints imposed by the frame-sending model
and the QoE objective, we formulate the rate control problem
as a QoE maximization problem:

max
R1,··· ,RN

QoEN
1 (9)

s.t. Equation (1) to (6)

The MARC algorithm. The algorithm 1 shows a high-
level overview of the MARC. Tab. 1 lists the key variables

Table 1: Key Variables of the Model
Notation Meaning

qR(R) Quality evaluation function
qL(L) Latency evaluation function

λm Weight for motion frames
λs Weight for non-motion frames
I Frame interval (ms)

d(Ri) Size of frame i
b(i) Size of send queue when at t(i)
t(i) Time when frame i is packetized
s(i) Send time of frame i
t(i)′ Time when frame i departs from the send queue
C(i) Average pacing rate from t(i) to t(i)′

L(i) Motion-to-photon latency of frame i
M(i) Whether frame i is a motion frame (0 or 1)
Ct Pacing rate at time t

OWD(i) One way delay while sending frame i

Algorithm 1 MARC: Motion-aware Rate Control
input:M[i−N,i], OWD[i−N,i], C[i−N,i],λs,λm,b(i)
output: Ri+1: Encoder target bitrate for the next frame
On frame encoded

1: M̂[i,i+N] = MotionPredict(M[i−N,i])

2: ˆOWD[i,i+N] = OWDPredict(OWD[i−N,i])

3: Ĉ[i,i+N] = PacingRatePredict(C[i−N,i])

4: Ri+1 = fMARC(b(i),M̂[i,i+N], ˆOWD[i,i+N],Ĉ[i,i+N])

in the algorithm. The algorithm runs whenever a frame is
encoded. It determines the target bitrate for the next frame.
Thus, the decision time for the algorithm is about a frame
interval (e.g., 33 ms in 30 fps). The algorithm employs an
N-step lookahead strategy (moving horizon) to address a spe-
cific QoE maximization problem. The window size is set
to N = 10, a fine-tuned parameter striking a good balance
between performance and overhead, as evaluated in § 5.4
and Appendix A. This involves predicting motion (M̂[i,i+N]),
propagation latency ( ˆOWD[i,i+N]), and pacing rate (Ĉ[i,i+N])
by the state predictor.

In Algorithm 1, four functions act as the core building
blocks. MotionPredict(·) takes the observed motion labels
from the past N frames and predicts future labels (M̂[i, i+N]).
OWDPredict(·) uses recent RTT measurements to forecast
propagation delay ( ˆOWD[i, i+N]). PacingRatePredict(·)
analyzes pacing rates from the previous N frames to estimate
upcoming sending rates (Ĉ[i, i+N]). Finally, fMARC(·) com-
bines these predictions with the current queue state b(i) to
determine the next-frame bitrate Ri+1, maximizing QoE by
balancing latency and visual quality while adjusting to user
motion.

3.6 State Predictor
The state predictor is crucial for forecasting user motion,

pacing rate, and propagation delay, which are essential inputs
for the MARC system.



User motion predictor. We have developed a Markovian
model that predicts the motion sequence of user frames based
on the types of the previous M frames. The model forecasts
whether the next frame will be of type 0 or 1 and continues
this prediction for future N frames. Its state transition prob-
abilities are derived from statistical data observed online, as
observed in § 2.2. Since each frame type is binary, the model
encompasses 2M states. We evaluate the M and the prediction
accuracy in § 5.3.

Pacing rate predictor. While Eq. (4) provide a theoretical
definition of the average pacing rate C(i), obtaining an exact
solution for Eq. (4) in a real-time system is non-trivial. In
our implementation, we approximate C(i) by the current send-
ing rate of recent pacing rates. This approximation assumes
that over the short interval, the pacing rate does not fluctuate
dramatically. Since our system primarily targets short pacer
queues and a relatively stable sending rate, such approxima-
tion provides sufficient accuracy (see § 5.3).

Propagation delay predictor. We use the smoothed RTT to
estimate the propagation delay (which is 1/2 RTT). Similar to
predicting the pacing rate, as the RTT variation within a short
period is stable as evaluated in § 5.3. Note that the completion
time of a frame may be delayed by packet disorder or jitter. We
verified that 99.8% of disordered packets experience delays of
less than 16 milliseconds. Therefore, packet disorders within
a frame are less likely to severely increase the completion
time. Thus, we can disregard the impact of the disorder.

4 System Implementation

4.1 Motion Frame Identification
The Unreal-Engine Pixel Streaming plugin [15] bridges

the cloud renderer and its WebRTC transport. It passes video
frames from the rendering application down to WebRTC for
transmission and forwards user inputs received via WebRTC
up to the rendering application. Among these inputs, each
motion event is handled by our modified plugin, which for-
wards the event to a helper function added to WebRTC’s
PeerConnectionInterface [57]. The helper then notifies
MARC, which marks the next encoded frame as a motion
frame.

4.2 MARC System Implementation
The dynamic QoE optimization model is the core of the

MARC system. It involves carefully designed QoE functions
and an efficient solving process for real-time optimization.
We implemented MARC within the PixelStreaming [15] and
the WebRTC framework, using 1,246 lines of C++ code.

QoE functions. The principles for designing QoE objective
functions are (i) they should be continuous and differentiable
to allow adjustments in the continuous action space, and (ii)
they should reflect the user’s subjective experience.

Following these principles, we designed a non-linear qual-
ity QoE function as in Eq. (10). The first term in this function
(1− 1

R/a+1 ) characterizes the diminishing marginal effects of
increasing bitrate on improving video quality, as observed in
Vantage [49]. The second term (RMax+a

RMax
) normalizes the QoE

score to the [0,1] range. In our setting, a= 2,Rmax = 8 (Mbps).
We evaluate the impact of QoE functions in Appendix B.

qR(R) = (1− 1
R/a+1

)× RMax +a
RMax

(10)

Similarly, the latency QoE function is defined as Eq. (11),
following the same principles. It imposes minimal penalties
for low-latency regions but increases progressively at high-
latency regions, consistent with findings in the study [36]. In
our setting, we normalize the maximum allowable latency
with Lmax = 150 ms.

qL(L) = (
L

Lmax
)2 (11)

Continuous rate optimizer. To solve the problem in
Eq. (9), we employ the NLopt [25] optimization library in
C++. The optimizer treats the bitrates of the next N (de-
fault N = 10) frames as real-valued decision variables, each
box-constrained to the application-defined range [Rmin,Rmax]
([0,8] Mbps in our setting). Each call is warm-started with
the optimal solution from the preceding frame, while the first
frame is initialised with an initial bitrate of 1 Mbps. Optimiza-
tion terminates when the relative change of all variables falls
below 10−4.

Reducing computing overhead. The primary computa-
tional cost arises from solving the N-step look-ahead opti-
mization problem, which has a time complexity of O(KN),
where K is the number of iterations per step. To improve per-
formance, we (i) select a relatively small prediction window
of N=10 (determined experimentally as the parameter that
best balances overhead and solution quality; the computing
overhead is evaluated in § 5.4, the quality is verified in Ap-
pendix A); and (ii) using NLopt’s gradient-based SLSQP [13]
backend to reduce the number of iterations required per step
(a comparison of different non-linear optimization solvers and
their computational overhead is presented in § 5.4). Addition-
ally, we further reduce computing overhead by designing a
simple motion state predictor.

Motion state predictor. We represent the state of the M
historical frames as the key by encoding the binary sequence
(St−M, . . . ,St−1) into an integer k = ∑

M
j=1 St− j ·2 j−1 and the

probability of the next frame being a motion frame as the
value, denoted as pt , storing this data in a C++ map. The
probability is built offline from a large dataset of interaction
traces: for each context key k we compute pt = Pr(St = 1 |
k) = N(k,St=1)

N(k) , where N(·) counts occurrences in the dataset,
thus pt is the estimated conditional probability that a mo-
tion frame follows this context. Predicting the next frame



involves a simple hash lookup for the probability, followed by
a Bernoulli draw with parameter pt . This approach reduces
computing overhead for online deployment.

The space complexity of storing the statistical user motion
model is O(2M), where M is the number of historical frames.
Each frame state is encoded as 1 bit (1 for motion, 0 for non-
motion). The memory used for the map can be shared across
multiple sessions, preventing linear scaling of costs as the
number of concurrent sessions increases. The storage over-
head for a single process is minimal, representing only a 3%
increase in memory usage compared to the overall process.

5 Evaluation

This section comprehensively evaluates MARC using both
trace-driven simulations and large-scale real-world deploy-
ments on mobile networks.

5.1 Evaluation Setup
Trace driven evaluation setup. To accurately compare

and replicate the bitrate control algorithms, we implemented
the simulation environment based on the architecture depicted
in Figure 1. This setup allows us to replay traces representing
user behavior and network conditions.

Trace collection. We collect traces from our online system.
These traces record the application, encoder, and transport
models’ behaviors. Specifically, the application layer data
encompasses the user motions (as measured in § 4.1). The
encoder model provides the encoding bitrate of each frame,
the frame intervals, and the frame sizes. The transport layer
information includes the pacing rate and the Round-Trip Time
(RTT) for each of the frame’s packets. Our dataset, collected
from February 23 to March 27, 2024, comprises over 200,000
sessions and 1.8 billion frames.

Online evaluation setup. We deployed MARC in a produc-
tion environment as described in § 2.2 to assess its real-world
performance. To conduct an A/B test, the online experiment
randomly assigns each user request to either WebRTC’s de-
fault rate control algorithm or the proposed MARC algorithm.

Baselines. We compare MARC with the following bitrate
control algorithm as baselines:
• WebRTC [45]. The default transmission framework in our

environment. It contains the EncoderBitrateAdjuster [8]
module. The encoder bitrate adjuster dynamically adjusts
the target bitrate of the encoder based on the observed av-
erage network utilization over a specified period, typically
reducing the bitrate if the actual frame sizes exceed ex-
pected values.

• SQP [48]. SQP uses 90% of available bandwidth as the
target bitrate to prioritize low transmission latency. Note
that we only compare the rate control strategy of SQP, while
we keep the bandwidth estimation strategy the same as
WebRTC.

• Vidaptive [26]. Vidaptive’s rate control logic dynamically
adjusts the encoder’s rate discount factor α to ensure that the
λth percentile of frame send durations over a defined time
window T is closely aligned with the target send duration
∆. We use λ = 90, T = 1s, ∆ = 33ms in the evaluation. To
ensure fairness, the Vidaptive frame-skipping strategy is
disabled because frame rate control and rate control are
orthogonal.

• Commercial video applications models. We utilize the in-
ferred rate control models from the study [28]. Specifically,
we employ the video bitrate control model represented
by the parameters γ and µ. The parameter γ is a scaling
factor that indicates the ratio of video bitrate to available
bandwidth, while µ is a constant with units of kbps. We
evaluated the performance of all the six application mod-
els in the study and selected three representative applica-
tions for demonstration: Zoom (γ = 0.88, µ =−1.57), Duo
(γ = 0.72, µ = −1.91) and GoTo Meeting (abbreviated as
GoTo) (γ = 0.78, µ = −1.36). The other models exhibit
performance similar to that of these applications.

• MARC derivatives. We vary the weight of motion frames
λm and non-motion frames λs.
Metrics. We evaluate the quality by the target bitrate of

each frame and the visual quality metrics like peak-signal-to-
noise-ratio (PSNR), structural similarity index (SSIM) [55],
and VMAF [29]. We evaluate latency by the send duration
and frame latency.

5.2 Performance Improvement
We evaluate the performance of MARC and the baselines in

the trace-driven simulation environment. MARC extends the
performance boundary compared to the baseline algorithms.

Improving performance for motion frames. MARC
achieves significantly lower motion frame latency compared
to multiple baseline algorithms (e.g., Zoom, Duo, WebRTC,
Vidaptive, etc.) under similar visual quality conditions. In
particular, MARC reduces the 95th-percentile (P95) send du-
ration plus queueing latency (shown in Fig. 10a) by 30% to
55% relative to the baselines, thanks to proactively allocat-
ing bitrate to consecutive motion frames and thus avoiding
excessive queue buildup.

Additionally, MARC achieves better visual quality than the
baseline under similar latency conditions. For instance, the
optimal MARC configuration (λs = 1,λm = 0.275) boosts the
average bitrate by 35% over Duo (see Fig. 10a), while si-
multaneously reducing the P95 frame latency (Fig. 10b) of
motion frames by 33–101 ms relative to various baselines. We
also examined MARC’s derivatives with λs = 0.05 (chosen
for its high visual quality in Fig. 11b) and varied λm from 0 to
1, these variations are connected by dashed lines. Even with-
out explicit motion awareness (λm = 0), MARC achieves the
highest average bitrate among all tested methods, while main-
taining a markedly lower P95 tail latency than most baselines.



WebRTC MARC Vidaptive SQP GoTo Duo Zoom

6 7
Average Bitrate (Mbps)

0

50

100

150P9
5 

Q
ue

ue
+S

en
d 

(m
s)

λm=0
λm=0.05λm=0.1

λm=1λs=1.0,λm=0.275

 Bett
er 

(a) P95 send duration + queueing
latency of motion frames.

6 7
Average Bitrate (Mbps)

50

100

150

P9
5 

Fr
am

e 
La

te
nc

y 
(m

s)

λm=0
λm=0.05λm=0.1
λm=1λs=1.0,λm=0.275

 Bett
er 

(b) P95 frame latency of motion
frames.

Figure 10: Bitrate and tail latency of motion frames.
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(b) P95 frame latency of ses-
sions.

Figure 11: Encoder target bitrate and tail latency.

The gain arises from MARC’s queue-responsive optimization:
a large frame inflates the queue length b(i), increasing both its
own send time (Eq. (3)) and the buffered data for subsequent
frames (Eq. (5)). The larger send buffer lengthens the queue-
ing delay of those later frames, which lowers the cumulative
QoE in Eq. (8). To maximize QoE, MARC therefore lowers
the bitrate of the upcoming frames. Because motion frames
are typically large and arrive consecutively (see § 2.2), this
mechanism implicitly prioritises motion phases even when
λm = 0. As λm grows, MARC realizes better Pareto trade-
offs between quality and latency (i.e., moving closer to the
lower-right corner in Fig. 10a and Fig. 10b), surpassing the
baselines in both dimensions.

This indicates that MARC’s dynamic bitrate adjustment
method utilizes bandwidth more effectively and reduces la-
tency better than fixed-rate allocation methods or purely reac-
tive methods. Compared to the Vidaptive method, which also
adjusts the bitrate dynamically, MARC achieves lower motion
frame latency. This is because MARC uses a motion predictor
to allocate bitrate for motion frames ahead of time, whereas
Vidaptive only reduces the bitrate upon detecting a latency
increase. These results align with our analysis in § 2.4.

Improving performance across all sessions. To evaluate
MARC’s overall performance, we collect the P95 queue+send
latency and frame latency for each session and average these
tail metrics across all sessions. Fig. 11(a) and (b) show the
resulting tradeoffs between encoder target bitrate (x-axis) and
tail latency (y-axis). By varying λs from 0.05 to 4, MARC
traces out a Pareto frontier that clearly outperforms the base-
lines (Zoom, Duo, WebRTC, Vidaptive, etc.). At comparable
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Figure 12: CDF of average session QoE across all sessions.

target bitrates, MARC achieves 22%–60% lower P95 frame
latency than other algorithms. This performance gain arises
primarily from λs, which governs all frames, whereas λm
specifically targets motion frames (λm is fixed at 0.275 in this
experiment).

When λs = 0.05, MARC achieves the best quality, while
λs = 4 results in the lowest latency (Fig. 11b). Meanwhile,
Vidaptive exhibits higher P95 latency because its control logic
focuses on keeping P90 send duration below 33 ms; thus, the
top 10% of frames can exceed the frame interval. Additionally,
Vidaptive’s frame-skipping mechanism was disabled to ensure
a fair comparison. As a result, Vidaptive’s more aggressive
utilization of probed bandwidth, compared to other algorithms,
leads to prolonged queueing delays and consequently the
lowest overall QoE, as shown in Fig. 12. Overall, MARC’s
approach provides a distinct advantage in both latency and
video quality, validating our design hypothesis.

To further illustrate these QoE differences, Fig. 12 summa-
rizes the overall QoE achieved by each algorithm. For every
session, we first compute the per-frame QoE using the def-
initions in § 3.4, Eq. (10), and Eq. (11), and then average
these values to obtain the average session QoE. The MARC
curve corresponds to the default configuration of λs = 1 and
λm = 0.275. As shown in Fig. 12, MARC’s curve is farthest
to the right, indicating consistently higher QoE. Its median
exceeds the baselines by 3%–36%, and its tail QoE at P95 is
1.3%–21% higher. The steeper rise of MARC’s CDF further
suggests a smaller QoE variance across sessions.

5.3 MARC Deep Dive
The MPC algorithm’s performance is influenced by (i)

prediction accuracy [32, 62, 63] and (ii) QoE objectives [33,
63]. Therefore, we validate the impact of the state predictor
and QoE functions on MARC’s performance.

Motion frame predictor. We first verify the accuracy of
the motion frame predictor, followed by an analysis of its
impact on the accuracy of the MARC algorithm.

To evaluate the accuracy of the predictor, we divided the
dataset of user sessions collected online, allocating 80% of
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Figure 13: Accuracy rate of predicting the next frame’s type.

the sessions for training and the remaining 20% for prediction.
Within each session, frames were sequentially organized into
samples, where each sample consisted of M historical frames
followed by a single prediction frame.

The accuracy of the motion frame predictor is affected by
the state lengths (historical frame lengths). Fig. 13 illustrates
the relationship between state length and prediction accuracy
for the next frame type. As the state length increases, the ac-
curacy of predicting the next frame type improves from 94%
to 96%. The high accuracy is because most frames are non-
motion frames, with motion frames constituting only 3.4% of
all frames. However, the accuracy of predicting the start of
a motion is relatively low, with a maximum of 36.8% and a
recall of 36.7%. This is because the timing of the user’s mo-
tions is random and therefore difficult to predict. Nonetheless,
motion sequences tend to occur consecutively as observed
in § 2.2, leading to a 72% improvement in the accuracy of
predicting frames following an initial motion. This ensures
the accuracy of MARC’s optimization for motion sequences.

To further evaluate the predictor’s impact, we compared
MARC’s performance under three scenarios: using ground-
truth user motion sequences, predicted motion sequences, and
without motion prediction (treating all frames as non-motion
frames). Fig. 14a shows the CDF of send duration for these
scenarios. The performance with predicted motion sequences
closely matches that of ground-truth sequences, reflecting the
high accuracy of our predictor. Without motion prediction, the
median send duration doubles, emphasizing the importance
of motion-aware rate control.

Fig. 14b compares the target bitrates for motion frames
under these three strategies. Without motion frame prediction,
the target bitrate is highest, increasing the likelihood of en-
coder overshooting and longer send durations. Using motion
prediction results in a median target bitrate 5% lower than
with ground truth, due to prediction errors.

We also examined the impact on non-motion frames, as
shown in Fig. 15. The send duration distribution remains
consistent across all three strategies (Fig. 15a). However, the
median target bitrate with motion prediction is 3% lower
than with ground truth or no-motion strategies (Fig. 15b), as
approximately 2% of non-motion frames are misclassified as
motion frames, resulting in more conservative bitrate control.

Pacing rate and RTT predictor. We analyze the pacing
rate and RTT for each frame in the motion sequence. Fig. 16a
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Figure 14: Performance of motion prediction model.
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Figure 15: Performance evaluation of the prediction model
on non-motion frames.

illustrates the mean pacing rate for each frame position in
motion sequences. The results show remarkable consistency,
with the standard deviation remaining below 0.08 for the
first four frames. This stability supports our strategy of us-
ing historical pacing rates to estimate future rates accurately.
Similarly, in Fig. 16b, the mean RTT of consecutive frames
remains stable with little variance, this consistency justifies
our use of smoothed RTT values for future RTT estimation.
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Figure 16: Stable pacing rate and RTT in motion phases.

5.4 Overhead Evaluation
Zero client-side overhead. MARC achieves efficiency with

all functionalities implemented server-side, eliminating any
impact on mobile device energy, storage, or computation, mak-
ing it ready for large-scale deployment.

Minimal server-side overhead. We measure the inference
time of two non-linear optimization solvers, SLSQP [13] and
COBYLA [44], on our testbed server equipped with an Intel
i9-13900KF CPU. In this experiment, the prediction window
size was varied from 5 to 20 frames in increments of 5 frames.
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Figure 17: Per-frame execution time of two optimization
solvers with different window sizes.

We varied the input transport rate from 0.1 to 8 Mbps in
steps of 0.1 Mbps, and the send queue size from 0 to 150 KB
in steps of 1.5 KB, as different inputs affect the execution
time. Each input state was tested 1000 times, and the average
execution time was recorded.

The results are presented in Fig. 17. COBYLA’s execu-
tion time is lower than SLSQP’s when the window size is
10 frames or fewer. However, the computation time of the
COBYLA algorithm increases faster than SLSQP, resulting in
longer execution times for COBYLA when the window size
exceeds 15. During testing, we observed that COBYLA may
reach its iteration limit without finding a solution for certain
inputs when the prediction window is large. For these reasons,
we choose to use SLSQP. Its average per-frame inference
time is 24.6 µs, and the maximum time is 5.4 ms, both well
within the frame interval (33 ms in our setting), with a pre-
diction window size of 10. Furthermore, this results in only a
1.3% increase in absolute CPU utilization per session, making
it suitable for multiple concurrent sessions in mobile cloud
rendering scenarios. In practice, a rendering node already
limits itself to about ten sessions per GPU, so server capacity
remains GPU-bound; MARC’s extra CPU demand is well
below the point where CPU becomes the scaling bottleneck.

5.5 Video Quality Evaluation

We assessed MARC’s impact on video quality by compar-
ing original renderer output with received frames on a local
testbed. The test uses 500-frame videos under various net-
work traces. We employed three video quality metrics: PSNR,
Structural Similarity Index (SSIM), and VMAF phone model.
Tab. 2 shows that MARC has only a 1% decrease in PSNR
(48.13 vs. 47.74) and VMAF (96.4 vs. 95.7) compared to
WebRTC, while its average throughput demand differs by
less than 3% from the baseline, indicating minimal perceived
quality loss. MARC has a higher standard deviation in PSNR
because MARC adjusts the bitrate for motion frames, resulting
in minor quality fluctuations during the adjustment process.

Table 2: Video quality of MARC vs. WebRTC.

PSNR SSIM VMAF

WebRTC 48.13(±0.82) 0.9937 96.4
MARC 47.74(±0.96) 0.9933 95.7

5.6 Large Scale Evaluation in the Wild
We deployed MARC in the online environment as described

in § 5.1. MARC was compared with WebRTC in an A/B test.
The test was conducted from April 4, 2024, to April 11, 2024,
encompassing over 1 million sessions.

Metrics. Both latency and user engagement are evaluated.
Latency measurements include the send duration of motion
frames, the proportion of motion frames with an MTP la-
tency exceeding 150ms, and the session freeze rate, which
is the ratio of sessions that experience at least one freeze
event. The freeze event count is provided by WebRTC [59].
User engagement is assessed using two behavioral interaction
metrics [42]: session duration, which measures the total time
each user spends on the service, and the ratio of interaction
time to the session duration, which measures the user activity
level.

Reducing latency. MARC reduces the frame latency by
20% at the tail (P99) and 29% at the median, as shown
in Fig. 18a. Consequently, the proportion of motion frames
with an MTP latency exceeding 150ms decreased by 20%.
Additionally, the session freeze rate variance decreased, as
illustrated in Fig. 18b, where the whiskers represent the 5th
and 95th percentile values, and the average session freeze rate
(denoted by a blue dot in the box) is reduced by 71%.
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Figure 18: Latency evaluation in online environment.

Improving user engagement. The latency reduction trans-
lates to improved user engagement. The session duration
increased by 9%. The ratio of interaction time relative to the
session duration increased by 20%, indicating that users were
more willing to interact with the service under the MARC strat-
egy. Such improvements in user engagement can potentially
lead to increased profitability for e-commerce platforms [5].

Table 3: Comparison of user engagement metrics.

Session Duration Interaction Ratio

WebRTC 1 1
MARC 1.09 1.20



6 Discussion

Generalizability. MARC’s motion-aware bitrate adapta-
tion extends beyond mobile e-commerce to interactive RTC
workloads that alternate between active manipulation and
passive viewing, such as cloud desktops, and remote VR/AR
streaming. Porting MARC merely requires recalibrating the
QoE mapping (Fig. 2, Eq. (7)) with engagement studies from
the target application.

QoE function. In this study, we adopt a simplified QoE
model that emphasizes two core elements of user experience:
video quality and frame latency. Our results in Appendix B
show that, even with this simplified model, the specific QoE
formulation notably influences algorithm performance. Ex-
panding beyond this formulation, a more sophisticated QoE
model could integrate additional factors such as content com-
plexity [47] and user expectations [19,31]. Metrics like bitrate
switching could be explored under multi-dimensional QoE
objectives to refine the framework further.

Controlling frame size. Our system uses existing encoder
APIs to regulate encoding parameters, deliberately avoiding
alterations to internal logic [17]. Certain frameworks offer
the possibility of fine-grained frame size control by adjust-
ing QP values [11] or through iterative re-encoding [12, 40],
MARC can extend its action space to incorporate these tech-
niques. However, even with a perfect encoder that can encode
frames at the exact target bitrate, users may still have different
QoE requirements for motion and non-motion frames, which
existing rate controllers cannot meet.

Paced sending and state predictors. Paced sending was
employed to mitigate risks of queue buildup and network
congestion when handling oversized frames [56]. Although
pacing smooths network load, our simplified prediction of
pacing rates may introduce latency estimation errors under
extreme network bandwidth variations or prolonged queues.
Several prediction modules, including pacing rate prediction,
can still be improved by incorporating advanced time-series
forecasting methods, such as those based on transformer [30].
We leave this part for future work.

Integrating other optimizations. Other techniques exist
that target different components of the end-to-end pipeline in
RTC systems, including loss recovery [36, 51] and last-mile
latency optimization [35]. While these techniques are promis-
ing to be combined with MARC to improve QoE performance,
applying them in e-commerce cloud rendering systems may
require further investigation.

QoE fairness. QoE fairness concerns dividing shared net-
work resources so that users experience comparable satisfac-
tion. Minerva [38] explores this for video-on-demand streams,
a non-interactive setting where visual quality dominates and
latency is largely secondary. In contrast, MARC’s measure-
ments show that in interactive RTC workloads QoE priori-
ties shift with the user’s interaction phase § 2.2. This state-
dependent insight provides a useful lever for future studies on

fairness in multi-user interactive systems.

7 Related Work

QoE-related factors and metrics in video streaming. A
substantial body of work has examined the impact of network
conditions and video quality metrics on user engagement in
streaming applications [10,27,53]. Building on these findings,
MARC firstly correlates user engagement with user behavior
and derives dynamic QoE preferences to guide rate control.

Rate control methods. Various rate control methods have
been developed to optimize different aspects of Quality of
Experience (QoE) in video streaming. For example, research
has focused on dynamically adjusting bitrate based on fac-
tors such as dynamic network [52, 64, 65, 68], content com-
plexity [47], quality sensitivity [43, 66], smoothness require-
ment [7] and visual attention [16, 37, 46, 54]. However, these
rate control methods typically rely on a fixed QoE model
or predefined trade-offs. In contrast, MARC addresses intra-
session QoE preference changes, continuously adjusting bi-
trate according to user behavior within the same session.

Congestion control for RTC. In RTC systems, congestion
control algorithms (CCAs) aim to maximize bandwidth uti-
lization and avoid network overloading [6, 24, 48, 53]. CCAs
typically probe bandwidth and adjust video sending rates
based on delay, loss, or other congestion signals, but do not di-
rectly optimize for QoE objectives. Therefore, existing CCAs
cannot solve the observed issue in § 2.

8 Conclusion

We have conducted a large-scale QoE study and identified
that user behavior in mobile e-commerce cloud rendering
exhibits unique QoE requirements, particularly in motion
phases. Existing rate controllers often overlook the rapid QoE
preference shifts in motion and non-motion phases, resulting
in excessive latency exactly when users most value interac-
tive responsiveness. To tackle this, we developed MARC, a
dynamic QoE-driven motion-aware rate control framework
that integrates user-behavior modeling and network dynam-
ics, adjusting the bitrate at the frame level to optimize QoE.
We implemented MARC and deployed it on Taobao’s mobile
cloud rendering platform. Millions of sessions demonstrated
the efficiency of MARC in improving tail latency and user
engagement.
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Appendix

A Finding the Best Prediction Horizon

In this section, we evaluate how different prediction horizon
sizes (N) affect the performance of MARC. We vary N from
1 to 15 frames, measuring both the QoE gains (Fig. 19) and
the additional computational overhead (Fig. 17). As shown
in Fig. 19, using a horizon smaller than 10 frames can lead
to suboptimal decisions that degrade tail latency (99.9 per-
centile), whereas increasing N beyond 10 frames yields only
marginal QoE improvements at the cost of higher runtime
overhead. Therefore, we select N = 10 as the default pre-
diction horizon for MARC, striking a good balance between
performance and complexity.
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Figure 19: Impact of different prediction horizon sizes on
overall QoE. Increasing N from 1 to 10 significantly reduces
tail latency. Further increasing N yields diminishing returns.

B QoE Object Sensitivity

Sensitivity to QoE object. The QoE function defines the
optimization objective and plays a crucial role in influenc-
ing MARC’s decisions. We investigate the impact of different
QoE functions qR on MARC’s bitrate selection by comparing
the concave QoE function Eq. (10) with the linear QoE func-
tion Eq. (12). In our controlled experiments, we varied the
send queue size and transport rate as follows: the transport
rate ranged from 0.1 to 8 Mbps in increments of 0.1 Mbps, and
the send queue size ranged from 0 to 150 KB in increments of
1500 bytes. The one-way delay was kept at 0, focusing solely
on the impact of queuing delay on MARC’s decision-making.
The delay QoE function qL (Eq. (11)) remains unchanged
with λs = 0.1, and motion frames are not considered.

qR(R) =
R

Rmax
(12)

(a) qR (Eq. (10)). (b) Linear qR (Eq. (12)).
Figure 20: The impact of different QoE object functions qR
on MARC’s bitrate decision (represented by color).

As shown in Fig. 20, both objective functions reduce the
bitrate as the send queue increases. However, the algorithm
using qR makes more continuous bitrate decisions (Fig. 20a),
while the algorithm using a linear qR exhibits abrupt changes
in bitrate (Fig. 20b). Such abrupt decision changes negatively
impact the algorithm’s overall performance. We evaluate the
performance of these QoE objective functions on frame la-
tency in our trace-driven evaluation environment. As shown
in Fig. 21, the Pareto frontier of qR outperforms that of Linear-
qR.
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Figure 21: Comparison of the P95 frame latency with different
qR objective functions.
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