
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024 5799

Accurate Throughput Prediction for Improving QoE
in Mobile Adaptive Streaming

Gerui Lv , Qinghua Wu , Qingyue Tan , Weiran Wang , Zhenyu Li , Member, IEEE, and Gaogang Xie

Abstract—Video streaming is the most important mobile applica-
tion today. To improve users’ quality of experience (QoE), the client
player runs adaptive bitrate (ABR) algorithms that dynamically
select the bitrate for video chunks based on throughput or delivery
time predictions. This paper aims to design an accurate predictor
for mobile adaptive streaming by investigating all its components,
including input features, output target, and mapping function. We
construct the first theoretical framework that reveals potential
factors affecting chunk throughput and delivery time. To verify
this framework, we provide formulation analysis and measurement
observations based on 2500+ video sessions collected in real-world
mobile networks. We find that previous works have failed to achieve
accurate prediction due to overlooking the impact of the transport
mechanism and application behavior on throughput. Furthermore,
we show that throughput is a better target for data-driven pre-
dictors than delivery time, due to the long-tailed distribution of
delivery time. Based on the above, we propose Lumos, a decision-
tree-based throughput predictor that can be integrated into vari-
ous ABR algorithms. Extensive experiments in real-world mobile
Internet show that Lumos achieves high prediction accuracy and
improves the QoE of MPC by 6.3%, and MPC+Lumos outperforms
Pensieve by 19.2%.

Index Terms—Adaptive streaming, mobile internet, QoE
improvement, throughput prediction.

I. INTRODUCTION

ADVANCED wireless technology, such as 5G and WiFi7,
enables high-speed delivery for mobile devices. As a re-

sult, mobile video streaming currently accounts for the majority
of the Internet traffic and has become the primary application of
over-the-top (OTT) services [2]. HTTP-based video streaming
(standardized as DASH [3]) is wildly deployed in commercial

Manuscript received 18 April 2023; revised 20 July 2023; accepted 31 August
2023. Date of publication 11 September 2023; date of current version 4 April
2024. This work was supported in part by the National Key R&D Program of
China under Grant 2022YFB2901800, in part by Natural Science Foundation of
China under Grants U20A20180 and 62072437, and in part by Beijing Natural
Science Foundation under Grant JQ20024. Recommended for acceptance by
G. Xylomenos. (Gerui Lv and Qinghua Wu are co-first authors.) (Corresponding
author: Gaogang Xie.)

Gerui Lv, Qingyue Tan, and Weiran Wang are with the Institute of Com-
puting Technology, Chinese Academy of Sciences and University of Chinese
Academy of Sciences, Beijing 101408, China (e-mail: lvgerui@ict.ac.cn; tan-
qingyue22s@ict.ac.cn; wangweiran@ict.ac.cn).

Qinghua Wu and Zhenyu Li are with the Institute of Computing Technology,
Chinese Academy of Sciences and University of Chinese Academy of Sciences,
Beijing 101408, China, and also with the Purple Mountain Laboratories, Nanjing
211100, China (e-mail: wuqinghua@ict.ac.cn; zyli@ict.ac.cn).

Gaogang Xie is with the Computer Network Information Center, Chinese
Academy of Sciences and University of Chinese Academy of Sciences, Beijing
101408, China (e-mail: xie@cnic.cn).

Digital Object Identifier 10.1109/TMC.2023.3313592

video services such as Netflix [4], YouTube [5], and Hulu [6].
In DASH systems, each video is encoded into multiple versions
with the same content but different average bitrates (i.e., quality).
Each version is further segmented into chunks with equal dura-
tion, usually 2–10 seconds. The client video player runs adaptive
bitrate (ABR) algorithms to select the bitrate of each chunk
based on network capacity, in order to maximize the quality
of experience (QoE), including maximizing video quality and
minimizing rebuffering time and quality switches.

Most ABR algorithms use throughput prediction to estimate
network capacity [7], [8], [9], [10], [11], [12], [13], [14], [15].
As an alternative, recent works [16], [17] advocate to predict
the delivery time of chunks for better QoE. Despite all these
efforts, predicting network capacity remains challenging in the
mobile Internet due to the high dynamic of bandwidth caused
by wireless channel interference, weak signal strength, etc.

In this work, we aim to design an accurate predictor for
adaptive streaming to optimize QoE in real-world mobile Inter-
net. Naturally, two key problems related to prediction in ABR
algorithms emerge:

i) Input features: What factors assist in achieving better
prediction? Taking throughput as an example, the application’s
perceived throughput is affected by both network condition and
application behavior [18], [19], [20]. Traditional throughput pre-
dictors for video streaming, whether history-based [7], [15], [21]
or learning-based [10], consider throughput fluctuation mainly
as a change of network condition. Recent works [13], [16], [17]
start considering chunk size in prediction. However, chunk size
cannot represent all application behaviors, such as ON-OFF
period [18], [19]. Furthermore, most studies explore the design
space from single disconnected points, and few attempt to take
a holistic view of this issue.

ii) Output target: Which one of throughput and delivery time is
a better target to predict? Since throughput and delivery time can
be converted to each other with the chunk size given, they are
considered interchangeable in representing network capacity.
However, while throughput corresponds to bitrate selection,
delivery time is directly used to calculate QoE ((22)). There-
fore, it is intuitive to regard delivery time as a more effective
indicator for ABR algorithms. Nevertheless, there is still a lack
of quantitative comparisons between these two indicators.

This paper tackles the above problems and achieves the fol-
lowing contributions:
� We construct a theoretical framework that incorporates

potential factors impacting throughput and delivery time
prediction for mobile video streaming (Section III-A).

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6158-1345
https://orcid.org/0000-0001-5526-4984
https://orcid.org/0009-0002-9609-033X
https://orcid.org/0009-0000-0843-707X
https://orcid.org/0000-0002-9959-1124
https://orcid.org/0000-0003-4964-1135
mailto:lvgerui@ict.ac.cn
mailto:tanqingyue22s@ict.ac.cn
mailto:tanqingyue22s@ict.ac.cn
mailto:wangweiran@ict.ac.cn
mailto:wuqinghua@ict.ac.cn
mailto:zyli@ict.ac.cn
mailto:xie@cnic.cn

5800 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Additionally, we perform a formulation analysis to vali-
date this framework (Section III-B). Our framework dif-
ferentiates between application throughput and available
bandwidth and shows how the transport mechanism and
application behavior affect perceived throughput and de-
livery time. To the best of our knowledge, this is the first
theoretical framework for network prediction in mobile
adaptive streaming.

� We build a mobile video streaming measurement platform
and collect an extensive dataset1 containing 2500+ sessions
in real-world mobile networks. Through data analysis, we
quantitatively verify our proposed theoretical framework
and make the following observations (Section III-C). (i)
There is a strong correlation between chunk size and
throughput, which has been overlooked by most previous
works, leading to inaccurate throughput prediction. (ii)
This correlation is deeply affected by the state of the client
player, the relative chunk index, and the signal strength of
the mobile devices.

� We find that throughput is a better prediction target than
the delivery time for data-driven methods (Section IV-A).
Results from controlled experiments indicate that (iii) pre-
dictors for the delivery time have more significant predic-
tion errors due to the long tail distribution of delivery time
in the mobile Internet, which can be fitted by a power law.

� Based on the above observations, we propose Lumos, a
decision-tree-based throughput predictor for mobile adap-
tive streaming (Section IV-B). Lumos can be integrated
into existing ABR algorithms as a plug-in to improve the
prediction accuracy and assist in improving QoE (Section
IV-C).

� We evaluate three Lumos-assisted ABR algorithms (RB,
MPC [8], and BBA [22]) in real-world mobile networks
(Section V). Experimental results indicate that Lumos
achieves much better prediction accuracy, and Lumos-
assisted ABR algorithms outperform the original algo-
rithms in terms of QoE. In particular, MPC+Lumos im-
proves average QoE by 6.3% over original MPC and
even 19.2% over Pensieve [23], which is a state-of-the-art
learning-based ABR algorithm.

II. BACKGROUND AND MOTIVATION

Background: ABR algorithms determine the bitrate of each
video chunk based on network and player information obtained
when retrieving previous chunks. Existing ABR algorithms can
be classified into four categories: rate-based (e.g., [7], [9], [10]),
buffer-based (e.g., [22], [24]), mixed (e.g., [8]) and learning-
based (e.g., [23]). Rate-based approaches and buffer-based ap-
proaches select the bitrate based on the predicted throughput and
the buffer occupancy of the video player, respectively. Mixed
approaches select the bitrate based on both throughput and
buffer level, which are also taken as input in learning-based ap-
proaches. Note that rate-based and mixed approaches originally

1To facilitate future work, part of our collected dataset has been made publicly
available at https://github.com/GreenLv/Lumos.

Fig. 1. A real-world case of RobustMPC.

require explicit throughput prediction. Besides, even buffer-
based and learning-based approaches tend to rely on throughput
prediction when deployed in real-world environments, e.g., the
change from BOLA [24] to DYNAMIC [12], and from Pen-
sieve [23] to ABRL [14]. Under this circumstance, accurate
throughput (or delivery time) prediction is vital to improving
the QoE of video streaming.

Motivation: Achieving accurate throughput prediction is still
a challenging problem in mobile networks. For both academic
research and wildly deployed video services, a large gap exists
between the bitrate selected by ABR algorithms and the available
bandwidth [25], [26]. A real case under the Wi-Fi connection of a
classical ABR algorithm (RobustMPC [8]) is present to illustrate
how inaccurate throughput prediction harms QoE. RobustMPC
is reported to perform well in the wild Internet [16], predicting
chunk throughput based on the harmonic average value of past
samples and further decreasing the prediction according to past
prediction errors. Fig. 1(a) shows that if the real throughput
of one chunk suddenly falls (at the 81st chunk), the predicted
throughput of the next chunk by RobustMPC will also decrease.
However, when the real throughput of chunks rises in the future
(from the 82nd chunk), RobustMPC’s predictions cannot react
to the changes in time. As a result, although the real throughput
is high enough for the highest bitrate (i.e., chunk size divided by
chunk duration), RobustMPC keeps selecting lower bitrate lev-
els for three consecutive chunks, unnecessarily reducing video
quality and causing fluctuation and QoE degradation.

One will usually attribute the throughput plummeting in
Fig. 1(a) only to network bandwidth fluctuations and believes
that throughput is difficult to predict [22]. However, this is partly
caused by confusing application throughput with available band-
width, as many prior works have done [7], [9], [10], [23], [27].

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/GreenLv/Lumos

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5801

Fig. 2. Theoretical framework about factors impacting chunk throughput and
the delivery time.

As illustrated in Fig. 2, many factors influencing throughput are
overlooked in most existing prediction schemes. For instance,
as shown in Fig. 1(b), it seems that throughput changes in the
same trend as chunk size, which was also mentioned in prior
works [16], [19]. This indicates that variation in application
perceived throughput may not be dominated by network condi-
tions as previously considered. Although throughput prediction
of video streaming has already been widely investigated [9],
[10], [15], [16], [17], [18], [19], [21], [25], there still lacks a
fundamental understanding of this issue, which motivates our
work in this paper.

III. STUDY ON PREDICTION FACTORS

In this section, we aim to identify the input features of the
predictor by answering the following question: What factors
assist in achieving better prediction? We begin by describing our
proposed theoretical framework about factors that impact appli-
cation throughput and delivery time (Section III-A). We then
formulate the chunk delivery procedure to investigate further
how these factors affect throughput and delivery time (Section
III-B). Finally, we verify our theoretical analysis based on the
extensive dataset collected from the real-world mobile Internet
and report our observations (Section III-C).

A. Theoretical Framework for Prediction

Throughput prediction in adaptive streaming is not a new
topic. Previous studies have analyzed throughput evolution and
pursued more accurate predictions. For instance, [19] first stud-
ied the influence of the ON-OFF behavior and the background
traffic on the application throughput in adaptive streaming.
CS2P [10] found that connections with similar status (e.g., ISP,
region) exhibit similar throughput patterns, [28] investigated
how traffic policing affects throughput, and [15] showed that
different CDN layers where chunks are served from lead to
different throughput. Inspired by [18], [19], Fugu [16] started
considering chunk size in predicting delivery time and using the
statistics of the transport layer (e.g., RTT, congestion window,
and sending rate) as connection status. As a follower, Xatu [17]
combined static features from CS2P with temporal features,
including chunk size and Time to First Byte (TTFB).

Despite all these efforts, there is still a lack of fundamental un-
derstanding in predicting throughput and delivery time in mobile

networks. For this reason, by summarizing existing works, we
construct a theoretical framework containing potential factors
impacting throughput and the delivery time of chunks, as shown
in Fig. 2. The application throughput of a chunk is calculated as
the chunk size divided by the delivery time. The delivery time
is the duration from when the first byte of the request is made
to when the last byte of the response is received [15]. Since
delivery time can be calculated from application throughput with
chunk size given, factors that impact throughput also impact
delivery time. Therefore, we focus on factors directly impacting
application throughput.

The application throughput is close to but less than the receiv-
ing rate of chunks due to two reasons. First, application through-
put only considers bytes in chunks, excluding bytes in headers
of protocols at various layers (e.g., TCP and HTTP headers).
Second, application throughput involves the processing delay
of the application. However, if we disregard these differences,
application throughput is equivalent to the receiving rate.

Two factors determine the receiving rate: the bottleneck link’s
available bandwidth and the sender’s sending rate [20]. If the
sending rate is below the available bandwidth, it will determine
the receiving rate. Otherwise, the receiving rate depends on the
available bandwidth. Factors that impact available bandwidth
and sending rate are listed below.
� Available bandwidth equals link capacity minus back-

ground traffic. Link capacity is further determined by
the physical property of the link, traffic policing [28],
and connection status between the server and the client
player. Previous works have explored various methods to
characterize connection status, leveraging information of
network-side (e.g., LTE base station [9], ISP, region [10],
CDN layer [15]) or endpoint-side (e.g., RTT, congestion
window [16], TTFB [17], connection type and signal
strength [29]).

� Sending rate is controlled by the congestion window
(CWND) of the server and essentially depends on the
available bandwidth, the transport mechanism (e.g., con-
gestion control), and the application behavior. The ON-
OFF period is the unique behavior of video streaming [18],
[19], indicating that the player requests chunks periodically
rather than continuously after the start-up phase. During
the inactivity time of the player (i.e., the OFF period),
no data is transferred between the client player and the
server. If the inactivity time exceeds a timeout (200 ms
in Linux), the server resets the CWND to the initial size
(e.g., 10MSS) and returns to the slow-start phase [19],
which is named slow-start restart [23], [30], [31]. Due
to the application behavior and transport mechanism, the
request pattern of the video player can be divided into two
states [18]: the buffering state, in which CWND is adjusted
continuously in subsequent chunks and the steady state in
which slow-start restart occurs when retrieving each chunk.

Our theoretical framework reveals the relationship between
network conditions (the yellow area in Fig. 2), transport mech-
anism (the blue area in Fig. 2), and application behavior (the
purple area in Fig. 2), as well as their impact on application
throughput and delivery time. To the best of our knowledge, this

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5802 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

framework presents a clear roadmap for selecting input features
of the network predictor for the first time.

B. Formulation Analysis

To gain a deep understanding of our proposed framework, we
formulate the chunk delivery procedure for theoretical analysis
to investigate how the transport mechanism and application
behavior impact throughput and delivery time.

1) Application Throughput and Delivery Time: The delivery
time of a chunk begins with sending the first byte of the request
and ends with receiving the last byte of the response, correspond-
ing to several (or more) complete RTT rounds. For thekth chunk,
we denote its size, delivery time, and application throughput as
Sk, Dk, and Tk, respectively. Let RTT k be the average RTT
and mk be the number of RTT rounds in this chunk. Then we
have:

Dk = RTT k ∗mk. (1)

Given Sk, application throughput can be calculated as:

Tk =
Sk

Dk
. (2)

(1) and (2) indicate that application throughput depends on
the number of RTT rounds in delivering the chunk, namely mk.
We now focus on how to calculate it. Since mk is determined
by how many bytes can be delivered in each RTT and need to
be delivered in total (i.e., Sk), we have the following equation:

mk−1∑
i=1

cwnd
(k)
i < Sk ≤

mk∑
i=1

cwnd
(k)
i , (3)

where cwnd
(k)
i indicates the congestion window (CWND) size

(bytes that can be sent) in the ith RTT during delivering chunk
k. We only discuss the case when mk ≥ 2 because video chunks
are always larger than the CWND size.

2) State of Congestion Control: CWND size is determined
by the congestion control algorithm (CCA). CCAs typically have
three states: slow start (SS), congestion avoidance (CA), and fast
recovery (FR) [32]. The typical CCA starts with the SS state,
doubling its CWND every RTT until the sending rate reaches
the available bandwidth. After that, it switches to the CA and FR
states, controlling the CWND size in order to avoid congestion
in the link. This part illustrates how to calculate the sum of the
CWND size for CCAs in all states.

SS State: If the CCA stays in the SS state throughout the
delivery of the entire chunk, the sum of its CWND in mk rounds
is calculated as:

mk∑
i=1

cwnd
(k)
i = cwnd

(k)
1 ∗ (2mk − 1), (4)

where cwnd
(k)
1 is the initial CWND size of chunk k.

CA&FR States: In these states, different CCAs adjust CWND
in different ways. We will discuss two categories of widely
deployed CCAs: loss-based CCA and BBR [20].

i) Loss-based CCA: This type of CCA, such as Reno and
Cubic [33], serves as the default CCA in Linux Kernel. In a

stable network environment, the loss-based CCA periodically
switches between CA and FR states according to the ACKs.
We denote this period as pk RTTs for chunk k (pk ≥ 2).
Specifically, in the CA state, the CCA’s CWND size grows
at a certain rate (depending on the algorithm) within pk − 1
RTTs until the packet loss event occurs, where the CWND
size is denoted as W

(k)
max. After that, the CCA enters the FR

state and reduces the CWND size to W
(k)
min in one RTT before

re-entering the CA state. Taking Reno as an instance, this process
is known as Additive Increase/Multiplicative Decrease (AIMD),
and W

(k)
min = 1/2 ∗W (k)

max.
In the pk RTTs period of any loss-based CCA, the sum of

CWND takes on the following range of values (depending on
the CWND adjustment function in the CA&FR states):

W
(k)
min ∗ (pk − 1) +W (k)

max

≤
pk∑
i=1

cwnd
(k)
i ≤ W

(k)
min +W (k)

max ∗ (pk − 1). (5)

Let W (k)
min = θ ∗W (k)

max, where θ ∈ (0, 1). Further, the following
equation holds extensively for loss-based CCAs:

pk∑
i=1

cwnd
(k)
i = β ∗W (k)

max ∗ pk, (6)

where θ + (1− θ)/pk ≤ β ≤ 1− (1− θ)/pk (derived from
(5)) and β ∈ (0, 1). For Reno, β = 0.75 [32]. When the CCA
converges to a stable state, pk, W (k)

max, and W
(k)
min remain almost

unchanged, and the following holds [32]:

β ∗W (k)
max = BW k ∗RTT k, (7)

whereBW k denotes the average available bandwidth during the
delivery of chunk k. More generally, for the entire video chunk
delivered in mk RTTs, we have:

mk∑
i=1

cwnd
(k)
i = γ ∗W (k)

max ∗mk, (8)

where γ � β (� means almost equal or equal to) and γ ∈ (0, 1).
When mk is an integer multiple of pk, γ equals β.

ii) BBR: BBR’s ProbeBW phase corresponds to the CA&FR
states. Note that we exclude BBR’s ProbeRTT phase in the
formulation because it occurs infrequently and does not change
the main conclusion. In the ProbeBW phase, the CWND size
is adjusted per RTT by periodically changing the pacing_gain.
Each period lasts for 8 RTTs in BBR, and the pacing_gain is
adjusted in the order of [5/4, 3/4, 1, 1, 1, 1, 1, 1], with a mean
value of 1 per RTT in the period. Therefore, in every 8-RTT
period, the sum of CWND size is

∑8
i=1 cwnd

(k)
i = 8 ∗W (k)

base,

where W (k)
base indicates the base CWND size of BBR. Moreover,

for the entire chunk, the sum of CWND size is calculated as:
mk∑
i=1

cwnd
(k)
i � mk ∗W (k)

base. (9)

The two sides are not equal when and only whenmk mod 8 = 1,
where the difference is 1/4 ∗W (k)

base. This difference can always

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5803

be negligible due to (3). Additionally, when BBR converges to
a stable state, the following holds [20]:

W
(k)
base = BW k ∗RTT k. (10)

Summary: Based on (6) to (10), if the CCA stays in the
CA&FR states during chunk delivery, the following equation
holds for various CCAs in a stable network:

mk∑
i=1

cwnd
(k)
i = BW k ∗RTT k ∗mk. (11)

Furthermore, the CCA may start from the SS state and ends with
the CA and FR states. Let the jth (j ∈ [1, . . . ,mk − 1] hereafter)
RTT be when the state changes. Given (4) and (11), the CWND
sum can be calculated by the following.

mk∑
i=1

cwnd
(k)
i = cwnd

(k)
1 ∗ (2j−1 − 1)

+BW k ∗RTT k ∗ (mk − j + 1). (12)

Equations (3), (4), (11), (12) clearly indicate that mk depends
heavily on the chunk size and the state of CCA, which is further
affected by the state of client player (i.e., buffering state or steady
state), as discussed in Section III-A.

3) State of Client Player: In the startup phase of a session, the
client player continuously requests new chunks to accumulate
in the playback buffer. Once the buffer level exceeds a certain
threshold (e.g., 12 seconds in dash.js [34]), the player only
requests the next chunk when the buffer level falls below the
threshold due to playback. This creates two different request
patterns for the player: the buffering and steady states. In the
steady state, the CCA starts from the SS state (due to slow-start
restart)2 for each chunk, increasing the CWND from the initial
size (e.g., 10MSS in Linux Kernel Cubic [33]). On the other
hand, in the buffering state, the initial CWND size of a chunk
equals the CWND size in the last RTT of the previous chunk.
Therefore, chunk delivery is independent for each chunk in the
steady state, but not in the buffering state.

Steady State: We begin with calculatingmk in the steady state.
If the CCA stays in the SS state for the entire chunk transmission,
considering (3) and (4), we have:

mk =

⌈
log2

(
Sk

cwnd1
+ 1

)⌉
, (13)

where �x� rounds up x to the nearest integer, and cwnd1 is
the constant initial CWND size for all chunks, such as 10MSS.
Correspondingly, if the CCA changes from the SS to the CA&FR
states in the jth RTT, given (3) and (12), mk is calculated as:

mk =

⌈
Sk − cwnd1 ∗ (2j−1 − 1)

BW k ∗RTT k

⌉
+ j − 1. (14)

Buffering State: In the buffering state, the CWND size keeps
increasing with consecutive chunks until the CCA transitions
from the SS to the CA&FR states, which is assumed to occur in

2For other CCAs (such as BBR) that do not incorporate the slow-start restart,
their CWND is theoretically not affected by the player’s state. Consequently,
the value of mk for these CCAs is determined solely by (15).

the jth RTT while delivering the chunk kl. We ignore the case
where the CCA only stays in the SS state during the player’s
buffering state because it is less likely. Then we can compute
mk as follows:

mk =

⎧⎪⎪⎨
⎪⎪⎩
�log2(Sk

cwnd
(k)
1

+ 1)�, k < kl,

�Sk−cwnd
(k)
1 ∗(2j−1−1)

BWk∗RTTk
�+ j − 1, k = kl,

� Sk

BWk∗RTTk
�, k > kl.

(15)

Note that cwnd(k)1 = cwnd
(k−1)
mk−1 when k ≥ 2.

4) Summary: Based on (1), (2), (13), (14), (15), we draw the
following conclusions.3 (i) Application throughput (as well as
delivery time) of chunks is influenced by network conditions
(BW k and RTT k), transport mechanism (CCA’s state), and
application behavior (chunk size Sk and player’s state), which
is consistent with the theoretical framework proposed in Section
III-A. Specifically, (ii) when the player is in the steady state,
chunk throughput heavily depends on chunk size, as shown by
the nonlinear (piece-wise linear or logarithmic) relationship in
(13), (14). On the other hand, (iii) in the buffering state, the
relative index of successive chunks affects throughput when
sending rate is below available bandwidth, corresponding to
cwnd

(k)
1 in (15).

To verify our theoretical framework and formulation analysis,
we conduct an in-depth measurement-based study of real-world
mobile adaptive streaming, as described in the following sub-
section.

C. Measurement in Real-World Mobile Internet

In this part, we first describe our automated video streaming
measurement platform and the extensive dataset of video stream-
ing collected through this platform in the real-world mobile
Internet (Section III-C1). By analyzing the collected dataset, we
identify the factors that affect the throughput of video chunks
and quantitatively characterize how they assist in throughput
prediction (Section III-C2). Next, we examine the correlation
between throughput and chunk size, as well as the impact of
various factors on this correlation (Section III-C3).

1) Mobile Video Streaming Measurement Platform: To col-
lect the dataset for analysis, we built an automated video stream-
ing measurement platform following the DASH specification, as
shown in Fig. 3. The platform consists of a client that runs the
video player and a server that stores the video content.

Video Content: We used Elephant Dream and Big Buck
Bunny, two raw videos from [35]. Each video is approximately
10 minutes long. Using FFmpeg [36], we encoded these videos
by the H.264/MPEG-4 codec at bitrates in [300, 750, 1200, 1850,
2850, 4300] Kbps, which correspond to resolutions [144p, 240p,
360p, 480p, 720p, 1080p] (following [13], [23]). We created two
video versions for each bitrate with chunk durations of 2 and
4 seconds, respectively. Each version of the video is indexed

3Note that this formulation provides the upper bound of application through-
put (also the lower bound of delivery time). In real-world mobile networks, the
actual throughput can be lower due to changes in bandwidth (BWk) and RTT
(RTTk). Therefore, using data-driven methods is more practical to capture
real-world dynamics (see Section IV).

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5804 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 3. Architecture of the real-world mobile video streaming measurement
platform.

by a Media Presentation Description (MPD) file generated by
MP4Box [37].

Video Client: We used the Google Chrome browser with
dash.js [34] as the video player. Python scripts based on Sele-
nium [38] were developed to automatically control the browser,
imitating users’ requesting and playing behavior. The dash.js
settings were kept as default. The scripts ran on Windows
laptops, which were connected to APs by WiFi (2.4 GHz or
5 GHz) or cellular (4G)4 hotspots through USB.

Video Server: We used the Nginx server [40] to host video
content and dash.js codes. The server was deployed across three
distinct cloud servers located in three different cities, all running
Ubuntu 16.04, with different downstream bandwidths (5 Mbps
or 50 Mbps). We also deployed scripts on the server to interact
with the client. Note that our measurement platform is deployed
in the real world, so we conducted tests in the wild mobile
Internet instead of an emulator with throughput traces.

Methodology: A test contains several sessions and is con-
ducted as the following.
� Before each test starts, we record the client device’s con-

nection type and wireless signal strength. Since our aim
is to conduct tests rather than implement a complete pro-
duction system, the connection type is manually input
into the scripts.5 As for signal strength, RSSI of WiFi is
automatically obtained by pywifi [42] in the scripts, while
RSRP and SINR of cellular are manually fetched from
cellular-Z [43]. In practice, the signal strength of WiFi and
cellular can be accessed through specific Android APIs,
such as [44], [45]. To eliminate the impact of mobility, we
conducted tests with the client remaining still.

� To obtain data of chunks at all bitrates in one test, we
implemented a custom rule in dash.js that selects a constant
bitrate for the entire video session.6 Before each session
starts, the output bitrate in the custom rule will be increased
to the next available level by scripts on the server. Then,
the client requests the codes of the dash.js player from the
server and initiates the video session. In this way, all six
bitrate levels can be traversed in a test with six sessions.

4We also conducted tests under 5G connections. Since 5G bandwidth is always
above 100Mbps [29], [39], the results of these tests are similar to those conducted
under strong signal strength with 4 G.

5The connection type can be accessed in dash.js through Network Information
API [41]. However, desktop browsers did not support this experimental API
when we built this platform.

6We further implemented several existing ABR algorithms for training and
testing; see Sections IV-B and V.

� During each session, we collect information from both
the client player and the server’s TCP/IP stack. The client
records playback information of each chunk via the custom
rule, including chunk size, buffer level, delivery time,
inactivity time, rebuffering time, and application through-
put. The server captures information on TCP connec-
tion via tcp_probe in the Linux kernel, including CWND
size, slow-start threshold, smoothed RTT, and inflight
size.

We conducted extensive tests for each combination at different
time periods of the day (morning, noon, afternoon, or evening),
in different locations (four cities for the client), and with differ-
ent access network types (cellular or WiFi), to cover as many
usage scenarios as possible. In total, we collected data from
2500+ video sessions (800+ with a constant bitrate and 1700+
with ABR algorithms) containing 300,000+ video chunks from
December 2019 to May 2021.

2) Factors That Impact Throughput Prediction: To investi-
gate how factors in our theoretical framework (Fig. 2) contribute
to predicting the throughput of video chunks, we evaluate the
maximal information coefficient (MIC) [46] of throughput and
these factors. MIC measures the strength of the linear or non-
linear association between two variables based on the mutual
information [47], ranging from 0 (no correlation) to 1 (perfect
correlation).

Since it is difficult to accurately obtain the link’s physical
property and background traffic, we use past throughput samples
(e.g., the throughput of the last chunk) to roughly estimate their
effects, which are widely used to predict throughput in ABR
algorithms [7], [8], [21]. We use the downstream bandwidth of
the server to indicate traffic policing (Section III-C1). Regarding
connection status, several prior works focus on features of
the whole network, such as information of ISP, AS [10] and
CDN [15]. However, this information can not directly describe
the network environment of the mobile client, but also is hard for
the client to obtain, especially under DASH specification. Hence
we select respective factors of the client side, i.e., connection
type and signal strength [29], to characterize wireless connection
status (Section III-C1). We classify signal strength into three
categories (strong, middle, and weak) according to the RSSI
of WiFi and RSRP of cellular for comparison. Moreover, we
set the inactivity time to 200 ms to distinguish the two states
of the player, which are indicated by the relative index. The
relative index of each chunk is increased by consecutive chunks
in the buffering state; otherwise, it stays 0. Fig. 4 shows the MIC
score of throughput and each considered factor, computed using
Python minepy library [48].

Observation 1: Throughput of last chunk and target chunk size
are the two most important factors in throughput prediction.

Previous works that only consider past throughput samples,
such as [7], [8], fail to accurately predict throughput due to their
disregard for target chunk size. This distinction is important
because application throughput varies with different chunk sizes,
whereas available bandwidth does not. Although other factors
have a less direct impact on predicting throughput, we argue
that incorporating them leads to better prediction accuracy, an
investigation detailed in the following subsection.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5805

Fig. 4. MIC score of throughput and its impacting factors.

Fig. 5. MIC correlation of throughput and chunk size varies in different
player’s states.

3) Correlation Between Throughput and Chunk Size: Both
prior works [18], [19] and our formulation analysis in Section
III-B have indicated that application throughput is related to
chunk size. To further investigate this relationship, we utilize
MIC to assess the correlation between throughput and chunk
size and make the following observation.

Observation 2: Correlation between throughput and chunk
size is deeply affected by the player’s state, relative chunk index,
and signal strength of the client device.

Player’s State: To investigate the impact of the player’s state
on the correlation, we focus on data collected under the best
network condition, i.e., strong signal strength with 50 Mbps
downstream bandwidth, where link capacity is sufficient for de-
livery with the highest bitrate. Under this condition, the CWND
evolution closely follows the formulation analysis in Section
III-B. Fig. 5(a) shows that the correlation in the steady state is
higher than that in the buffering state. This is because CWND
in the steady state increases independently from the initial value
for each chunk before congestion is triggered (i.e., the CCA is
in the SS state). In this case, a larger chunk size leads to a larger
CWND and thus higher throughput, as illustrated in (13).

We further analyze how the correlation is affected by the
relative chunk index in the buffering state. Fig. 5(b) shows
that correlation decreases as the relative chunk index increases.
This is caused by successive chunks continuously ramping up
CWND and the sending rate (k < kl in (15)), eventually up to
the available bandwidth before the buffering state ends (k ≥ kl
in (15)). Additionally, we also find that in the buffering state,
throughput is positively correlated to the relative chunk index,
as shown in Fig. 6.

Fig. 6. Chunk throughput increases with relative chunk index in the buffering
state (with 95% confidence).

Bitrate Level: Fig. 8(a), which pertains to the steady state
under a strong network with 50 Mbps downstream bandwidth,
illustrates that the correlation decreases as the bitrate increases.
The reason is similar to the above. At higher bitrate levels, the
large chunk size allows the CWND to ramp up to a larger size,
where the server’s sending rate reaches the available bandwidth.
As a result, application throughput is mainly determined by the
network condition rather than the chunk size, as shown in (14).

Fig. 7 further depicts scatter plots of chunk throughput versus
chunk size at all bitrate levels. We can clearly see that scatters
of data points form two non-linear curves with different upper
bounds, corresponding to the buffering and steady states, respec-
tively. These results are consistent with the conclusions of our
theoretical analysis in Section III-B4.

Network Condition: We conducted tests in different network
conditions to investigate how traffic policing and connection
status affect the correlation. The following results show that
changes in BW k and RTT k in real-world mobile networks
make it difficult to directly calculate application throughput
based on our formulation equations in Section III-B.
� Downstream bandwidth of the server: We limited the

downstream bandwidth of the server to 50 Mbps and
5 Mbps, respectively, and showed the impact of traffic
policing on the correlation in Fig. 8(b) (only steady state
under strong signal). We found that the correlation under
low downstream bandwidth is much lower than that under
high downstream bandwidth because delivering a chunk
under low downstream bandwidth is more easily affected
by traffic policing, such as the token bucket [28].

� Wireless signal strength of the client: Fig. 8(c) presents the
impact of signal strength on the correlation (only steady
state with 50 Mbps bandwidth). As signal strength weak-
ens, the correlation becomes smaller correspondingly. To
explain this observation, we analyzed the data collected
from the transport layer by tcp_probe. We found that
when the signal strength is weak, smoothed RTT tends
to be longer for the larger chunks (especially at the higher
bitrates), which directly leads to an increase in delivery
time and a decrease in throughput. This phenomenon has
also been reported by prior works, such as [49], which
mentioned that RTT is correlated with inflight size.

Summary of Observations: These results all indicate that
application throughput depends on both the available bandwidth
affected by network conditions and the sending rate affected by

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5806 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 7. Scatter plots of chunk throughput versus chunk size at all bitrate levels in both buffering and steady states.

Fig. 8. MIC correlation of throughput and chunk size varies under different factors (with 95% confidence).

transport mechanism and application behavior. This finding con-
firms the validity of our theoretical framework and formulation
analysis. While previous studies have concluded that throughput
positively correlates with chunk size, we find that this correlation
is heavily influenced by the player’s state, video bitrate, and
network conditions in the real world. Therefore, to improve
accuracy when predicting throughput, these factors should be
considered.

IV. LUMOS: DESIGN AND IMPLEMENTATION

Our theoretical analysis and real-world observations in Sec-
tion III indicate that involving specific information can lead to
more accurate application throughput prediction. Based on that,
we propose Lumos, a throughput predictor for mobile adaptive
streaming. This section introduces the design choice (Section
IV-A) and details (Section IV-B) of Lumos, and shows how
Lumos is integrated into existing ABR algorithms as a plug-in
(Section IV-C).

A. Design Choice

As a predictor for ABR algorithms, Lumos aims to create a
faithful map between input features and output predictions. To
achieve this goal, two questions arise:

i) Output target: Which is a better target to predict, throughput
or delivery time? Both throughput and delivery time can repre-
sent how soon the next chunk will be available in the playback
buffer. Given the chunk size, each of the two targets can be
calculated directly from the other. Most previous works (e.g.,
FESTIVE [7] and MPC [8]) utilize predicted throughput to select
the bitrate, while recent ones (e.g., Fugu [16] and Xatu [17])
argue that delivery time is a better choice. We wonder if there
are differences in predictions between these two targets.

ii) Mapping function: Which model is more suitable for pre-
diction in mobile video streaming? As discussed in Sections
III-B and III-C, dynamics in mobile networks (e.g., due to traffic
policing or weak signal strength) are hard to model by formula-
tion equations. Therefore, state-of-the-art mapping functions are
built by data-driven methods, including multiple linear regres-
sion (MLR), decision trees, and Deep Neural Networks (DNNs).
Although DNNs can accurately model complex behavior, prior
studies have shown that they are heavyweight and lack inter-
pretability [14], [50], [51], making them difficult to design and
deploy. In contrast, recent works [51], [52] demonstrate that
decision trees are simple yet powerful enough to fit complex
functions for prediction, and provide high interpretability. Ran-
dom forest, a decision-tree-based method, is not considered here,
whose computation and storage overhead grow linearly with the
number of decision trees (100 as default in sklearn [53]). This
overhead is unaffordable when combined with ABR algorithms
that require many predictions per chunk, such as MPC [8], as
shown in Section V-E3. For these reasons, we develop predictors
based on decision trees, and also MLR for comparison.

To investigate the questions above, we develop different pre-
dictors based on decision trees and MLR for each prediction
target separately, and evaluate their performance on prediction
through controlled experiments. These predictors are developed
mainly following the methodology described in Section IV-B,7

but without the two improvements of Lumos.
Prediction Metrics: Accurate prediction of throughput and

delivery time enables the ABR algorithm to select bitrates more
precisely, resulting in better QoE [10], [16], [39]. Therefore, we
evaluate the performance of the two targets based on prediction

7For delivery time predictors, the feature throughput of the last chunk is
replaced by delivery time of the last chunk.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5807

Fig. 9. Prediction error of the four considered predictors (with 95% confi-
dence).

Fig. 10. CDF of the prediction error of video chunks by various predictors.

accuracy. Following [10], [15], we use Absolute Normalized
Prediction Error Err (prediction error for short) as the metric,
defined as (16).

Err(DTime) =
1

N

N∑
k=1

|D̂k −Dk|
Dk

, (16)

where D̂k and Dk denote the predicted value and the real value
of delivery time of chunk k, respectively, and N denotes the
total number of chunks in a session. Note that the predicted
throughput is converted to the delivery time for comparison with
the directly predicted delivery time.

Controlled Experiments: Fig. 9 shows that decision trees (Tree
for short) outperform MLR in prediction. Moreover, for both the
two types of models, throughput prediction has a lower predic-
tion error (34.7%∼50.7% reduction) compared with delivery
time prediction. Thus, we have the following observation.

Observation 3: Throughput prediction achieves better accu-
racy than delivery time prediction.

This observation is striking because it suggests that to predict
the delivery time, it is better to construct a throughput predictor
and convert its predictions to delivery time, rather than directly
using a delivery time predictor.

To determine the underlying reasons, we first ask why the
prediction error of throughput predictors is lower. Prediction
error measures the amount by which the target is overestimated
or underestimated. For both delivery time and throughput, the
prediction error of underestimation is no more than 100%, while
that of overestimation could exceed 100%. Thus, overestima-
tion is the key factor in increasing prediction error. Fig. 10
shows the prediction error’s Cumulative Distribution Function

Fig. 11. CDF of delivery time and throughput of video chunks.

Fig. 12. A case of the predicted delivery time of various predictors.

(CDF) of each video chunk (not session).8 Delivery time pre-
dictors perceive prediction error of over 100% for more chunks
(6.6%∼12.4%) than throughput predictors (1.7%∼3.0%). This
result indicates that delivery time predictors overestimate deliv-
ery time more seriously than throughput predictors, leading to
higher prediction errors.

The second question is why delivery time predictors tend
to overestimate real values. We find that the root cause is the
long-tailed distribution of delivery time in mobile networks. We
consider values with a throughput greater than 100 Mbps or a
delivery time greater than 100 s as outliers and filter them out,
leaving us with 69163 data points for analysis. As shown in
Fig. 11, delivery time is much more long-tailed, with 0.8% of
chunks lying in the 89.2% tail of time interval (from 10 s to
93 s). This phenomenon is known as a character of the wild
mobile Internet, as noted in prior works [16], [54]. The data
distribution determines the models for both regression decision
trees and MLR. Delivery time predictors learn higher values
due to the long tail of the distribution of delivery time and thus
overestimate the actual values, as shown in Fig. 12. In contrast,
the distribution of throughput is more ”uniform”. As a result,
throughput predictors can faithfully learn the characters of most
data and avoid being affected by outliers at the long tail.

Understanding the Tail of Delivery Time: Since power-law
behavior is a classic sign of the long-tailed phenomenon and is
widely reported to exist on the Internet [9], [55], [56], [57], [58],
we wonder whether it also applies to the delivery time of chunks
in mobile adaptive streaming. [59] gives the standard form of the
probability density function of the power law distribution (also

8Fig. 10 and Fig. 11 are plotted with a logarithmic horizontal axis for display
convenience.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5808 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 13. Log-log plot of frequency versus chunk delivery time.

known as Pareto distribution or Zipf’s law [60]), defined as:

p(x) =
α− 1

xmin

(
x

xmin

)−α

, α, xmin ≥ 0, x ≥ xmin, (17)

where α is the exponent of the power law. A power-law distri-
bution appears as a straight line with slope α when plotted with
logarithmic horizontal and vertical axes [61].

Based on prior works in quantifying power law [59], [62],
we find that the tail of delivery time in mobile networks can
be well-fitted by a power-law distribution, as shown in Fig. 13.
Specifically, when xmin = 3.69, the 11.6% tail (accounting for
96% of the entire time interval) of the delivery time can be
modeled by a power-law distribution with α = 3.62. This result
is highly consistent with the observation in [59] that only the
tail of a distribution follows a power law in most cases. The
power law indicates that events with larger values appear less
frequently. Thus, the tail of the delivery time, which may trigger
significant stalling [39], [54], is hard to predict. Furthermore,
given that power-law distribution is scale-free [61] (or scale-
invariant [56]), no matter how to filter the outliers, the distribu-
tion is constantly unchanged. Therefore, we cannot improve the
performance of delivery time predictors by pre-processing data,
making predicting throughput a better choice for data-driven
methods.

B. Lumos Mechanism

After identifying the answers to the three problems about
input features, output target, and mapping function, we can
establish a clear design principle for our decision-tree-based
throughput predictor: Lumos. Lumos involves the player’s state,
chunk information, and networking conditions as features. In
this subsection, we describe how to design, train, and implement
Lumos.

Design: Training decision trees is a supervised learning pro-
cess. Since the values of throughput are continuous, we use
regression trees. Besides, we tried to train classification trees
that discretize throughput into bins, but they perform worse than
regression trees. We select the input features for models follow-
ing the observations in Section III. Given that the information
of some features can not be directly accessed by the client (e.g.,
downstream bandwidth of the server), we use other forms of
features to approximate them. These features are divided into
three categories:

Fig. 14. Throughput under different signal strengths.

� Network conditions: including (1) the maximum of
throughput of past t chunks to estimate available band-
width [20], (2) the maximum of the delivery time of past
t chunks, (3) the connection type (WiFi or cellular) of the
client, and (4) the throughput of the last chunk;

� Player’s state: including (5) the relative index of the last
chunk, which indicates the player’s state by 0 for the steady
state and others for the buffering state;

� Chunk information: including (6) the bitrate and (7) the
size of last chunk, and (8) the bitrate and (9) the size of the
target chunk.

We find that in the real-world environment, it is hard for a sin-
gle decision tree to fit the throughput of all chunks due to its wide
range of distribution in mobile networks (2.0 Kbps∼84.7 Mbps
in our dataset). Therefore, we develop Lumos with two extra
improvements:
� Separate predictor for each network environment: As

shown in Fig. 14, we divide the network environment into
three categories according to the signal strength of the
mobile client (Section III-C2) and train a specific model
for each type of network respectively. Note that we are not
saying this classification is the best choice, but handling
with distinct network conditions separately helps the model
achieve better performance [27], [54], [63].

� Logarithm value of throughput as labels: Since the
throughput values lie in a wide range across 5 orders
of magnitude, we use logarithm values of throughput as
labels instead of original values. As for obtaining predicted
throughput, we calculate 10 raised to the power of which
Lumos outputs.

Training and Implementation: In order to train decision trees,
we use the Classification and Regression Tree (CART) algo-
rithm [64]. For regression trees, CART utilizes mean squared
error (MSE) as the loss function and generates trees by minimiz-
ing the MSE between predicted and real values. We implement
decision trees in Lumos based on sklearn [65], and train and
test Lumos using a video dataset that is the same as the one
deployed on our measurement platform Section III-C1. We
select data from 700+ video sessions running ABR algorithms
(not selecting constant bitrate) collected in real-world mobile
Internet containing 69,000+ chunks. 70% of all sessions are
used as the training set. Since an imbalanced dataset harms
the performance of decision trees [51], we balance the data
of various combinations of network conditions (downstream
bandwidth and connection type). Specifically, for each class

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5809

TABLE I
PARAMETER SEARCH SPACE OF REGRESSION TREES

TABLE II
VARIABLES AND THEIR MEANINGS IN ABR

of signal strength, we ensure that the count of chunks under
50 Mbps-cellular, 5 Mbps-cellular, 50 Mbps-WiFi, and 5 Mbps-
WiFi is roughly equivalent.

During model training, both prepruning and Cost Complexity
Pruning (CCP) [64] are applied to prune trees to prevent over-
fitting. In order to identify the optimal pruning parameters, we
conduct an exhaustive grid search and K-fold cross-validation
(K = 5) to select the best model. The parameter search space
is presented in Table I. After training, all of the models are
converted to JavaScript and loaded into dash.js for deployment.

C. Lumos as a Plug-In of ABR Algorithms

Lumos can be integrated into any ABR algorithm that uses
throughput prediction as a throughput predictor in mobile adap-
tive streaming. We use three classic ABR algorithms as examples
to show how Lumos is applied to existing schemes. We further
compare the performance of Lumos-assisted ABR algorithms
with that of original ABR algorithms in Section V. The three
ABR algorithms we use are:

i) Rate-Based (RB), which selects the highest bitrate below
the predicted throughput by harmonic mean (HM) of
throughput samples for past chunks. We integrate Lumos
with RB by replacing the HM predictor with Lumos. As
bitrates of video chunks (chunk size divided by chunk
duration) encoded with H.264/MPEG-4 fluctuate widely
around the average bitrate [13], RB+Lumos selects the
chunk according to its real bitrate instead of the average
bitrate to make reasonable decisions, as shown in (18).
Table II lists variable denotations.

Rk = max
1≤j≤m

{rj , dk(rj)/T̂k|rj ≤ L} (18)

ii) MPC [8], which uses both buffer level and predicted
throughput (by HM predictor, the same as RB) to se-
lect the bitrate that maximizes the estimated QoE of a
series of consecutive chunks. We design MPC+Lumos
by replacing the HM predictor in MPC with Lumos to
predict the throughput for each of future chunks, shown
in (19).9 As Lumos requires past throughput as features,
for the future chunks except the first one, Lumos takes its
predicted throughput of the prior chunk as input.

Rk = argmax
rj ,1≤j≤m

k+n−1∑
l=k

ˆQoE(Rl|rj) (19)

ˆQoE(Rl|rj) = Rl|rj −max

(
μ

(
dl(Rl|rj)

T̂l|rj
−Bl

)
, 0

)

− λ|Rl|rj −Rl−1|, k ≤ l ≤ k + n− 1

(20)

iii) Buffer-Based Approach (BBA) [22], which builds a linear
mapping function between the level of playback buffer
and target bitrate, and sets both lower and upper bounds
of the buffer to select bitrate. When the buffer level is
below the lower bound or above the upper bound, BBA
selects the lowest bitrate or highest bitrate, respectively.
When the buffer level is between the lower and upper
bound, it chooses the bitrate simply according to how
much the current buffer level exceeds the lower bound.
Although BBA makes decisions without prediction, we
argue that accurate prediction assists BBA in achieving
better QoE. We integrate Lumos with BBA by replacing
the linear mapping function with Lumos’s predicted val-
ues. BBA+Lumos retains the lower bound and redesigns
the bitrate selection function by predicted delivery time
(chunk size divided by the predicted throughput). For
each bitrate of the next chunk, BBA+Lumos sets a thresh-
old: the lower bound plus the difference between its
predicted delivery time and that of the lowest bitrate.
BBA+Lumos selects the bitrate only when the buffer
level exceeds the corresponding threshold, as illustrated
in (21).

Rk = max
1≤j≤m

{
rj , Blower +

dk(rj)

T̂k|rj
− dk(r1)

T̂k|r1
≤ Bk

}
(21)

V. EVALUATION IN THE WILD MOBILE INTERNET

This section presents evaluation results of Lumos’s prediction
performance (Section V-A), the QoE performance of Lumos-
assisted ABR algorithms (Sections V-B, V-C, and V-D) in real-
world mobile networks, and a deep dive into how Lumos uses
input features in prediction and Lumos’s overhead (Section V-E).

Methodology: We implemented the three ABR algorithms
above (Section IV-C) with their Lumos-assisted versions, as well

9In (20), |Rk −Rk−1| is equal to 0 when k = 1

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5810 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 15. Prediction performance of various throughput prediction methods.

as two additional schemes: RobustMPC [8] and Pensieve [23].
These were deployed in dash.js and tested on our measurement
platform, as described in Section III-C1. To evaluate all the
algorithms, we conducted extensive sets of tests with about 300
sessions to cover various network environments, including three
variables: downstream bandwidth of the server (50 Mbps or
5 Mbps), connection types (WiFi or cellular), and signal strength
(strong, medium and weak) of the mobile client. We balanced
the sessions under different network conditions, as during the
training of Lumos (Section IV-B). In addition, the default target
buffer threshold in dash.js is 30 or 60 seconds (depending on
the total length of the video) for the highest bitrate and 12
seconds for the lower bitrates. However, tests with a large target
buffer yielded similar QoE after the startup phase for all ABR
algorithms, as the bandwidth is higher than the highest bitrate in
most cases under strong or medium signal strength. Therefore,
we set the target buffer threshold to constant 12 seconds for all
bitrates to better differentiate the performance of various ABR
algorithms in the steady state.

A. Prediction Accuracy of Lumos

First, we evaluate the accuracy of Lumos in predicting the
throughput of video chunks.

Baselines and Metrics: We choose three widely used methods
as baselines: MLR (multiple linear regression, trained in the
same way as Lumos), HM (harmonic mean of past 5 samples),
and Robust-HM (harmonic mean of past 5 samples with er-
ror rate normalization, used in RobustMPC [8]). We use both
prediction error and mean squared error (MSE) to evaluate the
accuracy of predicting throughput.

Overall Prediction Accuracy: Fig. 15 shows the prediction ac-
curacy of various methods. Lumos achieves the best throughput
prediction performance in terms of prediction error and MSE.
Specifically, Lumos reduces two types of error for 87.8% and
82.6% of sessions compared to MLR, and for 91.3% and 93.9%
of sessions compared to HM. Regarding the average perfor-
mance, Lumos reduces two types of error by 16.8%∼38.7%
and 49.6%∼72.8% compared to all baselines.

Performance Under Various Environments: It is notable that
under strong networks connected with WiFi, Lumos achieves a
remarkably low prediction error with an average of only 7.4%
(Fig. 16 gives an example), and improves 57.7%∼74.0% and
78.5%∼90.5% in terms of two types of error compared to other
methods. Even under weak networks, Lumos still improves
accuracy by 9.1%∼28.9% and 17.8%∼61.7% over the two

Fig. 16. A case of Lumos’s accurate throughput prediction under a strong
network environment.

metrics. These results demonstrate that Lumos learns well about
the correlation between throughput and the considered factors.

Comparison With HM: Lumos achieves significantly better
prediction accuracy than HM, which is widely used in existing
ABRs. Results indicate that the advantages of Lumos over HM
are as follows:
� Awareness of network conditions and player’s state: When

there is not enough past data, i.e., in the start-up phase
of a session, it is difficult for predictors to make accurate
predictions [10]. Under strong networks connected with
WiFi (Fig. 17(a) as an example), HM obtains an average
prediction error of 95% for the first 5 chunks of sessions
due to a lack of past samples. In the same situation, Lu-
mos reduces the average prediction error to only 16% by
involving network conditions and the player’s state.

� Consideration of the fluctuation of chunk sizes: HM as-
sumes that the variation of available bandwidth deter-
mines throughput fluctuation. However, our analysis and
observations indicate that the chunk size strongly affects
the perceived throughput when the available bandwidth is
adequate. Fig. 17(b) shows a case in the steady state under
the strong network and demonstrates that Lumos clearly
knows how the fluctuation of chunk size affects throughput.

� Quick reaction to bandwidth fluctuation: Under weak
network conditions, throughput is always unstable with
frequent fluctuation, making it almost unpredictable. In
such scenarios, Lumos exceeds HM by quickly reacting
to fluctuations, as illustrated in Fig. 17(c). From the 69th
chunk, throughput suddenly decreases from 6.7 Mbps to
3.9 Mbps, lasting for the subsequent two chunks. Since HM
is insensitive to outliers [7], it should lower the predicted
values but increases them instead for three consecutive

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5811

Fig. 17. Cases of Lumos outperforming HM in throughput prediction.

Fig. 18. QoE Performance of MPC+Lumos versus MPC, RobustMPC and Pensieve in real-world mobile networks.

chunks, which may trigger rebuffering events. Contrast-
ingly, Lumos instantly perceives the dynamics of through-
put and makes more accurate predictions accordingly.

B. QoE of Lumos-Assisted MPC

We now evaluate the QoE performance of MPC+Lumos in
real-world mobile networks, comparing it to MPC and Ro-
bustMPC. MPC models the evolution of perceived QoE in
future chunks based on predicted throughput. The accuracy
of the throughput prediction directly corresponds to the QoE
performance of MPC [8].

QoE Metrics: To evaluate the QoE performance of the three
ABR algorithms, we use the metrics in MPC [8], defined as:

QoE =

N∑
k=1

Rk − μ

N∑
k=1

max

((
dk(Rk)

Tk
−Bk

)
, 0

)

− λ

N−1∑
k=1

|Rk+1 −Rk|, (22)

whereN is the number of chunks in the session,Rk is the bitrate
that the client selects for chunk k, the second item represents
the rebuffering time during delivering chunk k, and the last item
represents the smoothness of the bitrate switch between chunks.
In the equation, μ and λ are non-negative weighting parameters,
which are respectively set to 4.3 and 1.0, following previous
works [23], [27], [50].

Overall QoE Performance: Fig. 18 displays the QoE of
MPC, RobustMPC, and MPC+Lumos. Combining the results in
Fig. 18(a) and (b), MPC+Lumos always selects higher bitrates
with acceptable rebuffering time than the other two schemes.
Overall, Lumos improves average QoE by 6.3% over MPC and
8.7% over RobustMPC. We find that although Lumos provides
much better accuracy than Robust-HM (Section V-A), the re-
buffering time of MPC+Lumos is more than that of RobustMPC.
This is because RobustMPC is designed to avoid rebuffering
by predicting lower throughput, which however sacrifices video
bitrate (9% lower than MPC+Lumos) and total QoE. Moreover,
compared with MPC, MPC+Lumos makes more aggressive
decisions (3.4% increase in bitrate) while having a 52% reduc-
tion in rebuffering time. These results confirm the benefits of
Lumos’s accurate prediction.

Performance Breakdown: We further observe that under
various network environments in real-world mobile Internet,
MPC+Lumos consistently outperforms MPC and RobustMPC
as shown in Fig. 19. Specifically, MPC+Lumos improves the
average QoE of sessions by 3.81%, 2.73%, and 10.82% with
respect to MPC under strong, medium, and weak networks,
respectively. Compared to RobustMPC, these improvements are
5.49%, 9.75%, and 10.32%, respectively. Note that RobustMPC
performs slightly better than MPC under weak networks.

Under strong networks, MPC+Lumos improves QoE mainly
during the startup phase by selecting much higher bitrates for
chunks. Fig. 20 shows that MPC+Lumos can select the high-
est bitrate level from the 2nd chunk, while neither MPC nor

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5812 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 19. MPC+Lumos outperforms MPC and RobustMPC under all condi-
tions.

Fig. 20. MPC+Lumos selects the highest bitrate during the start-up phase in
strong networks.

Fig. 21. MPC+Lumos performs best in weak networks.

RobustMPC can achieve this for the first 5 chunks. Additionally,
based on Lumos’s accurate prediction, MPC+Lumos achieves
the highest bitrates under weak networks while avoiding severe
rebuffering events, as illustrated in Fig. 21. These results are
consistent with the advantages of Lumos over HM as discussed
in Section V-A.

C. MPC+Lumos versus Pensieve

Pensieve [23] is a state-of-the-art learning-based ABR algo-
rithm that utilizes deep reinforcement learning to optimize the
overall QoE. To compare Lumos-assisted ABR algorithms with
Pensieve, we selected MPC+Lumos because it achieves better
QoE than others.

Pensieve Deployment: As the performance of Pensieve heav-
ily relies on the similarity between the training and testing envi-
ronments, we used the source code provided by the authors [66]
and retrained Pensieve with our video dataset and network
traces (as used to train Lumos) collected in the wild mobile

Fig. 22. QoE Improvement of RB+Lumos and BBA+Lumos.

networks, following [16], [27]. We converted Pensieve’s model
into JavaScript and deployed it in dash.js by TensorFlow.js [67].

Comparison With Pensieve: Fig. 18 shows the QoE met-
rics of MPC+Lumos and Pensieve. Compared to Pensieve,
MPC+Lumos achieves remarkable improvement in QoE, out-
performing Pensieve on 93% of all the sessions, with an increase
in QoE of 19.2% on average. As for underlying QoE metrics,
MPC+Lumos improves the average bitrate by 8.9%, and reduces
the average rebuffering time and smoothness by 44.2% and
66.1%, respectively. The reasons why MPC+Lumos outper-
forms Pensieve in real-world mobile networks are summarized
below.
� Bias between the simulator and the real world: The simu-

lator used to train Pensieve’s model operates with constant
network traces, where bitrate selection does not change
chunk throughput. As noted in Section III and recent
studies [16], [54], [68], this simulation environment differs
significantly from the wild mobile Internet. Furthermore,
Pensieve’s simulator is designed with the precondition of
disabling slow-start restart [23]. In the real world, most
Linux servers enable slow-start restart by default, which
Pensieve is blind to. Consequently, Pensieve may have
difficulty accurately predicting throughput dynamics in the
real world.

� Limited ability of generalization: The throughput of chunks
varies greatly in the real world, with the maximum and
minimum values differing by 5 orders of magnitude in our
dataset (Section IV-B). This poses a huge challenge for
Pensieve’s single model to predict accurately. Although
we have already retrained Pensieve, it still appears not
powerful enough to specialize in all scenarios as reported
in [27].

D. Lumos With Other ABR Algorithms

Finally, we evaluate the QoE performance of RB+Lumos and
BBA+Lumos. Since RB and BBA do not consider smoothness,
we only focus on the average bitrate and rebuffering time of
RB+Lumos and BBA+Lumos. The results of the four considered
schemes are presented in Fig. 22 and confirm that with Lumos’s
assistance, both RB and BBA can obtain better QoE.

RB: RB+Lumos improves average bitrate by 3.3% and re-
duces average rebuffering time by 86.3% compared to RB.
Lumos learns from data in different environments to acquire
knowledge about what factors inherently change throughput.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5813

Fig. 23. Feature importance of Lumos’s models.

However, HM cannot provide RB with information on why
throughput varies. Besides, RB overlooks the chunk size, result-
ing in unnecessary rebuffering events or bitrate reduction. By
integrating Lumos, RB+Lumos makes more flexible decisions
than RB to appropriately deal with the throughput dynamic.

BBA: Compared with BBA, BBA+Lumos improves the two
metrics by 1.4% and 37.5%, respectively. Note that since the
target buffer level in our platform is only 12 s, we set the
lower and upper bound of BBA to 5 s and 10, respectively.
Our tests confirm that BBA itself is a simple yet effective ABR
algorithm in the real world, as reported in [16]. Specifically,
compared to MPC+HM, BBA delivers chunks with slightly
higher bitrate and lower rebuffering time on average.10 Even
though, BBA+Lumos still outperforms BBA on both bitrate
and rebuffering time. While BBA only considers the current
buffer level, Lumos obtains information about the environment
from the past and further predicts how it evolves in the future,
enabling BBA+Lumos to better balance the trade-off between
higher bitrate and less rebuffering time.

E. Lumos Deep Dive

1) Feature Importance: We start with investigating how Lu-
mos uses features to make predictions. To do so, we measure
the importance of features using the mean decrease impurity
metric, as described in [64] and implemented in sklearn [65].
This metric quantifies the total decrease in node impurity (MSE
for regression trees) brought by the feature. To analyze the
importance of features, we retrain Lumos models on the same
dataset without pruning decision trees. We hope that these results
will inspire designers of predictors.

Fig. 23 shows the importance of all features in Lumos models
trained with different traces, in descending order of the average
value. We observe that Lumos makes its decisions mainly based
on features about the network condition (i.e., the throughput
of the last chunk, maximum of past throughput, and delivery
time) and chunk information (i.e., size of the last and the target
chunk). Additionally, the player’s state and relative chunk index

10However, BBA perceives more bitrate switches and lower overall QoE per-
formance than MPC. These results are not presented because they are irrelevant
to Lumos.

Fig. 24. Throughput under different connection types.

Fig. 25. Top four layers of Lumos decision trees for three network envi-
ronments. PT : Past throughput (Mbps); MT : Maximum throughput (Mbps);
TCS: Target chunk size (MB);PCS: Past chunk size (MB);MDT : Maximum
delivery time (s); CT : Connection type; O: Leaf node output (the power of 10,
Mbps). Different colors correspond to different features, except for dark gray
which indicates the leaf node.

are more important in weaker networks than in stronger ones.
This is because in medium and strong networks, the throughput
is always sufficient to deliver chunks within their duration, and
the player rarely needs to request chunks continuously.

On the other hand, the remaining features are used less fre-
quently, including the client’s connection type and the bitrate of
the last and target chunk. These features are correlated with other
features that provide more information of the same type. For
example, although throughput varies under different connection
types of the client (as shown in Fig. 24), decision trees find
that other features (such as the throughput of the last chunk)
are more useful indicators. The same is true for the bitrate with
respect to chunk size. However, since decision trees are built
greedily, they cannot fully utilize the information in all features
simultaneously. Therefore, these features may be more useful for
other data-driven methods such as DNNs (e.g., [16] and [17]).

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

5814 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

2) Structure of Decision Trees: Fig. 25 depicts the structure
of Lumos’s decision trees deployed in dash.js. It can be seen
that although Lumos utilizes different features with different
thresholds to predict throughput, it mainly relies on past through-
put and target chunk size. This result is consistent with our
observation 1 in Section III-C2. Moreover, some features that are
less important may still be placed in a high layer of the decision
tree, as exemplified by the connection type in Fig. 25(a).

The pruned decision tree models for strong, medium, and
weak networks have depths of 11, 9, and 10, respectively, with
the number of nodes being 1099, 73, and 69, respectively. The
decision tree for strong networks is the most complex probably
because strong networks have the largest range of throughput
variations, as shown in Fig. 14.

3) Overhead: Lumos is lightweight and performs well in
real-world mobile networks, making it practical to run on mobile
devices.

Computation Overhead: Lumos accesses nodes in decision
trees based on feature values layer by layer to predict the
throughput, as shown in Fig. 25. The time spent on each predic-
tion is determined by the number of layers Lumos must access.
Even in the worst case, Lumos only searches 11 nodes (i.e., the
depth of the strong network’s decision tree).

When integrated with ABR algorithms, Lumos generates
multiple predictions for each chunk. For instance, RB+Lumos
predicts the throughput of the next chunk at all 6 bitrate levels,
while MPC+Lumos considers 5 future chunks in its solution
space and requires a total of 65 = 7776 predictions to select
the bitrate for each chunk. Based on evaluation results on a
Windows 10 laptop with an Intel Core i5-8300H 2.30 GHz CPU,
RB+Lumos takes less than 1 ms (the finest time granularity
that can be measured), while MPC+Lumos takes 13.3 ms on
average to obtain prediction values for each chunk, indicating
that Lumos requires only 1.7us to perform each prediction. Given
that the median delivery time of each chunk in our dataset is
1.4 s (Fig. 11), the average prediction time of MPC+Lumos is
less than 1% of that. Additionally, if the application is latency-
sensitive, MPC+Lumos can use only 6 predictions of the next
chunk for the future 5 chunks.

Storage Overhead: Although Lumos’s models require addi-
tional storage space in the client player, we find that Lumos
consumes only a small amount of memory. Specifically, the size
of Lumos’s three JavaScript models is 48.2 KB, 3.23 KB, and
3.07 KB, respectively, totaling 54.5 KB. This size is smaller
than the 2-second chunk at the lowest 300 Kbps bitrate level
(75 KB on average). Moreover, compared to the TensorFlow.js-
converted model of Pensieve, which has a total size of 443 KB,
Lumos’s models are 8.1 times smaller.

VI. DISCUSSION AND FUTURE WORK

A. Improving the Theoretical Framework

The theoretical framework proposed in Section III-A provides
an in-depth understanding of the factors that impact the through-
put of mobile adaptive streaming, which can guide future studies
on network prediction and faithful simulation [68]. Nevertheless,
there are several promising directions for future research.

Modeling Mobile Connection Status: Plenty of works have
been devoted to characterizing the connection status of the
link. Some focus on the server perspective (e.g., utilizing RTT
and delivery rate [16]), while others consider the client per-
spective (e.g., considering TTFB [17]). Some investigate the
global network (e.g., ISP [10], or CDN information [15]), while
others work on the single endpoint (e.g., wireless status [29], or
application throughput evolving [27]). Lumos uses connection
type and wireless signal strength as indicators for mobile net-
works. However, a uniform model for understanding this issue is
still lacking. Since connection status heavily influences mobile
network conditions, we look forward to an in-depth study on
modeling it.

Investigating the Interaction Between Transport Mecha-
nism and Application Behavior: Congestion control algorithms
(CCAs) are the essential component of the transport layer. In
this work, we analyze both loss-based CCAs (e.g., Reno and
Cubic [33]) and path model-based BBR [20],11 which are widely
deployed in production systems. In recent years, more CCAs
have emerged as alternatives in large-scale deployments, such as
Copa [69] in Facebook [70]. Under this circumstance, although
recent work has started to focus on the interaction between CCAs
and adaptive streaming [71], it remains unclear how different
transport mechanisms affect the application throughput.

B. Broader Application of Lumos

Integrated Into Other ABR Algorithms: We demonstrate the
benefits of Lumos’s accurate prediction in improving QoE for
ABR algorithms including MPC, RB, and BBA. In fact, Lumos
can be integrated into any ABR algorithm that relies on network
prediction, whether explicitly or implicitly. For example, DY-
NAMIC [12] involves a rate-based algorithm that requires ex-
plicit throughput prediction, where the existing predictor can be
replaced by Lumos, as in RB+Lumos. In addition, Pensieve [23]
utilizes implicit throughput predictions via 1D convolution lay-
ers based on past throughput, delivery time, and target chunk
size, and passes the output to deeper neural network layers. To
integrate Lumos into Pensieve, we can substitute Pensieve’s 1D
convolution layers (and corresponding features) with Lumos.
Note that Lumos and Pensieve are trained by supervised and
reinforcement learning, respectively. Hence, we need to train
Lumos’s models first, then incorporate them into Pensieve’s
neural network, and finally retrain Pensieve.

Applied in Other Video Applications: The core idea of Lumos
is to consider network conditions, transport mechanism, and
application behavior in throughput prediction using lightweight
data-driven techniques. Although Lumos is designed based on
observations in on-demand streaming, its core idea is applicable
to other mobile applications, such as live streaming, 360-degree
streaming, and volumetric streaming. However, different appli-
cations may rely on different transport mechanisms and exhibit
different behaviors. For example, live streaming may have idle

11We conducted several tests using BBR, but the chunk throughput was
significantly lower than that with Cubic. We opted not to use these results since
we are not sure whether this problem originates from the kernel implementation
of the cloud server or the BBR mechanism itself.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5815

periods during the download when the video content is unavail-
able on the server (e.g., not uploaded yet) [72], which differs
from the on-demand chunk delivery procedure in Section III-B.
In other words, further investigations are required to determine
the input features for individual applications.

C. Future Work: Faithful Simulation

Motivated by the observation that chunk size affects video
streaming throughput, recent studies start to focus on faithful
simulation. For example, CausalSim [68] aims to remove the bias
between Peniseve’s trace-driven simulator and the real world
(as described in Section V-C) by explicitly modeling the effect
of the ABR decisions (i.e., different chunk sizes) on perceived
throughput. In light of our proposed theoretical framework, we
find that other factors that affect throughput, such as CCAs and
the ON-OFF period, can also introduce biases in simulation. As
removing these biases is promising to further improve simulation
accuracy, we plan to investigate this research area in the future.

VII. RELATED WORK

There is a large amount of existing work on ABR video
steaming [7], [8], [11], [12], [13], [14], [16], [22], [23], [24],
[27], [50], [63], [73], [74], [75], [76]. Most of them rely on
predicting throughput or delivery time explicitly or implicitly.
However, only a few studies focus on this issue [9], [10], [15],
[16], [17], [18], [19].

Among them, [18] and [19] indicate that it is difficult to
predict throughput as background traffic exists, but they do
not investigate how to achieve better prediction. PiStream [9],
CS2P [10], and MPC-CDN [15] propose predictors based on
observations in the real world. However, they only focus on
factors about connection status and believe that throughput fluc-
tuation is solely brought about by changes in network conditions.
Fugu [16] and Xatu [17] consider chunk size in predicting deliv-
ery time. Nevertheless, chunk size only represents the amount
of the application’s delivered data. How the application behaves
during delivery and how it interacts with the transport layer also
matter.

Unlike the above, our work provides a fundamental under-
standing of network prediction for mobile adaptive streaming
based on theoretical analysis and real-world measurement. We
consider the impact of the transport mechanism and application
behavior in prediction, bring insight that predicting the through-
put is better than the delivery time, and propose a throughput
predictor that can be integrated into ABR algorithms and per-
forms well in the real-world mobile Internet.

VIII. CONCLUSION

Accurate network prediction is crucial for ABR algorithms to
improve QoE in mobile video streaming. This paper examines
all components in designing a predictor for ABR algorithms,
including input features, output target, and mapping function.
We construct a theoretical framework to identify features for
the predictor and verify this framework through formulation
analysis and real-world measurement involving 2500+ sessions

collected in wild mobile Internet. Observations indicate that
network conditions, transport mechanism, and application be-
havior determine application throughput. In addition, we find
that delivery time follows a long-tailed distribution, which a
power law can fit. Therefore, throughput is a better prediction
target for data-driven methods than delivery time. Based on the
above, we develop Lumos, an accurate throughput predictor for
mobile adaptive streaming. Evaluations in real-world mobile
networks demonstrate that Lumos assists existing ABR algo-
rithms in achieving better QoE. We further discuss directions
worth exploring in our theoretical framework, which we believe
will be useful for subsequent studies on network prediction and
faithful simulation.

REFERENCES

[1] G. Lv, Q. Wu, W. Wang, Z. Li, and G. Xie, “Lumos: Towards better video
streaming QoE through accurate throughput prediction,” in Proc. IEEE
Conf. Comput. Commun., 2022, pp. 650–659.

[2] SANDVINE, “2023 global internet phenomena report,” 2023. [On-
line]. Available: https://www.sandvine.com/global-internet-phenomena-
report-2023

[3] DASH, “Dash industry forum| catalyzing the adoption of MPEG-DASH,”
2023. [Online]. Available: https://dashif.org/

[4] Bitmovin, “Why Youtube and Netflix use MPEG-DASH in HTML5,”
2015. [Online]. Available: https://bitmovin.com/mpeg-dash-youtube-
netflix-html5/

[5] YouTube, “Delivering live Youtube content via dash,” 2023. [On-
line]. Available: https://developers.google.com/youtube/v3/live/guides/
encoding-with-dash

[6] S. Media, “Hulu: DASH is definitely the future for us,” 2014.
[Online]. Available: https://www.streamingmedia.com/Articles/
Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-
Us-97468.aspx

[7] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in Proc.
8th Int. Conf. Emerg. Netw. Experiments Technol., 2012, pp. 97–108.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach
for dynamic adaptive video streaming over HTTP,” in Proc. ACM Conf.
Special Int. Group Data Commun., 2015, pp. 325–338.

[9] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “piStream: Physical layer
informed adaptive video streaming over LTE,” in Proc. 21st Annu. Int.
Conf. Mobile Comput. Netw., 2015, pp. 413–425.

[10] Y. Sun et al., “Cs2P: Improving video bitrate selection and adaptation with
data-driven throughput prediction,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 272–285.

[11] Y. Qin et al., “A control theoretic approach to ABR video streaming: A
fresh look at PID-based rate adaptation,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., 2017, pp. 1–9.

[12] K. Spiteri, R. Sitaraman, and D. Sparacio, “From theory to practice:
Improving bitrate adaptation in the dash reference player,” in Proc. 9th
ACM Multimedia Syst. Conf., 2018, pp. 123–137.

[13] Y. Qin et al., “ABR streaming of VBR-encoded videos: Characterization,
challenges, and solutions,” in Proc. 14th Int. Conf. Emerg. Netw. EXperi-
ments Technol., 2018, pp. 366–378.

[14] H. Mao et al., “Real-world video adaptation with reinforcement learning,”
2020, arXiv:2008.12858.

[15] E. Ghabashneh and S. Rao, “Exploring the interplay between CDN caching
and video streaming performance,” in Proc. IEEE Conf. Comput. Com-
mun., 2020, pp. 516–525.

[16] F. Y. Yan et al., “Learning in situ: A randomized experiment in video
streaming,” in Proc. 17th USENIX Symp. Networked Syst. Des. Implemen-
tation, 2020, pp. 495–511.

[17] Y. S. Nam et al., “Xatu: Richer neural network based prediction for
video streaming,” ACM SIGMETRICS Perform. Eval. Rev., vol. 50, no. 1,
pp. 9–10, 2022.

[18] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What
happens when HTTP adaptive streaming players compete for bandwidth?,”
in Proc. 22nd Int. Workshop Netw. Operating Syst. Support Digit. Audio
Video, 2012, pp. 9–14.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

https://www.sandvine.com/global-internet-phenomena-report-2023
https://www.sandvine.com/global-internet-phenomena-report-2023
https://dashif.org/
https://bitmovin.com/mpeg-dash-youtube-netflix-html5/
https://bitmovin.com/mpeg-dash-youtube-netflix-html5/
https://developers.google.com/youtube/v3/live/guides/encoding-with-dash
https://developers.google.com/youtube/v3/live/guides/encoding-with-dash
https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx
https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx
https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx

5816 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

[19] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Con-
fused, timid, and unstable: Picking a video streaming rate is hard,” in Proc.
Internet Meas. Conf., 2012, pp. 225–238.

[20] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control,” Queue, vol. 14, no. 5, pp. 20–53,
2016.

[21] B. Wang and F. Ren, “Towards forward-looking online bitrate adaptation
for dash,” in Proc. 25th ACM Int. Conf. Multimedia, 2017, pp. 1122–1129.

[22] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Wat-
son, “A buffer-based approach to rate adaptation: Evidence from a
large video streaming service,” in Proc. ACM Conf. SIGCOMM, 2014,
pp. 187–198.

[23] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming
with pensieve,” in Proc. Conf. ACM Special Int. Group Data Commun.,
2017, pp. 197–210.

[24] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bitrate
adaptation for online videos,” in Proc. IEEE 35th Annu. Int. Conf. Comput.
Commun., 2016, pp. 1–9.

[25] X. K. Zou et al., “Can accurate predictions improve video streaming in
cellular networks?,” in Proc. 16th Int. Workshop Mobile Comput. Syst.
Appl., 2015, pp. 57–62.

[26] M. Licciardello, M. Grüner, and A. Singla, “Understanding video stream-
ing algorithms in the wild,” in Proc. Int. Conf. Passive Act. Netw. Meas.,
2020, pp. 298–313.

[27] Z. Akhtar et al., “OBOE: Auto-tuning video ABR algorithms to network
conditions,” in Proc. Conf. ACM Special Int. Group Data Commun., 2018,
pp. 44–58.

[28] T. Flach et al., “An internet-wide analysis of traffic policing,” in Proc.
ACM SIGCOMM Conf., 2016, pp. 468–482.

[29] A. Narayanan et al., “Lumos5G: Mapping and predicting commercial
mmwave 5G throughput,” in Proc. ACM Internet Meas. Conf., 2020,
pp. 176–193.

[30] M. Allman, V. Paxson, and W. Stevens, “Tcp congestion control,” RFC,
vol. 2581, pp. 1–14, 1999.

[31] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An MPTCP
path scheduler to manage heterogeneous paths,” in Proc. 13th Int. Conf.
Emerg. Netw. Experiments Technol., 2017, pp. 147–159.

[32] J. F. Kurose and K. W. Ross, Computer Networking: A. Top-Down Ap-
proach. 6th. Harlow, U.K.: Pearson Education Ltd, 2012.

[33] S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[34] Dindustry forum: Dashjs, “A reference client implementation for the
playback of MPEG dash via JavaScript and compliant browsers,” 2023.
[Online]. Available: https://github.com/Dash-Industry-Forum/dash.js/

[35] xiph.org, “Xiph.org: Derf’s test media collection,” 2023. [Online]. Avail-
able: https://media.xiph.org/video/derf

[36] FFmpeg, 2023. [Online]. Available: https://www.ffmpeg.org/
[37] J. Le Feuvre, C. Concolato, and J.-C. Moissinac, “GPAC: Open source

multimedia framework,” in Proc. 15th ACM Int. Conf. Multimedia, 2007,
pp. 1009–1012.

[38] Selenium, “Seleniumhq browser automation,” 2023. [Online]. Available:
https://www.selenium.dev/

[39] A. Narayanan et al., “A variegated look at 5G in the wild: Performance,
power, and QoE implications,” in Proc. ACM SIGCOMM Conf., 2021,
pp. 610–625.

[40] Nginx, “nginx news,” 2023. [Online]. Available: http://nginx.org/
[41] MDN, “Network information API - web apis,” 2021. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/API/Network_
Information_API

[42] J. Sheng-Jhih, “pywifi · pypi,” 2023. [Online]. Available: https://pypi.org/
project/pywifi/

[43] JerseyHo, “Cellular-z,” 2023. [Online]. Available: https://play.google.
com/store/apps/details?id=make.more.r2d2.cellular_z

[44] Android, “Wifiinfo– Android developers,” 2023. [Online]. Available:
[Online]. Available: https://developer.android.com/reference/android/net/
wifi/WifiInfo#getRssi()

[45] Android, “Cellsignalstrengthlte– Android developers,” 2023. [Online].
Available: [Online]. Available: https://developer.android.com/reference/
android/telephony/CellSignalStrengthLte#getRsrp()

[46] D. N. Reshef et al., “Detecting novel associations in large data sets,”
Science, vol. 334, no. 6062, pp. 1518–1524, 2011.

[47] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual infor-
mation,” Phys. Rev. E., Stat. Nonlinear, Soft Matter Phys., vol. 69, 2004,
Art. no. 066138.

[48] minepy, “Python api — minepy 1.2.6 documentation,” 2023.
[Online]. Available: https://minepy.readthedocs.io/en/latest/python.
html?highlight=mic#minepy.MINE.mic

[49] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in Proc. 23rd
Annu. Int. Conf. Mobile Comput. Netw., 2017, pp. 141–153.

[50] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick: A har-
monious fusion of buffer-based and learning-based approach for adaptive
streaming,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 1967–1976.

[51] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting deep
learning-based networking systems,” in Proc. Annu. Conf. ACM Special
Int. Group Data Commun. Appl. technol. Architectures Protoc. Comput.
Commun., 2020, pp. 154–17.

[52] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “PiTree: Practical
implementation of ABR algorithms using decision trees,” in Proc. 27th
ACM Int. Conf. Multimedia, 2019, pp. 2431–2439.

[53] scikit learn, “sklearn.ensemble.randomforestregressor — scikit-
learn 1.3.0 documentation,” 2023. [Online]. Available: [On-
line]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.
RandomForestRegressor

[54] H. Zhang et al., “Loki: Improving long tail performance of learning-based
real-time video adaptation by fusing rule-based models,” in Proc. 27th
Annu. Int. Conf. Mobile Comput. Netw., 2021, pp. 775–788.

[55] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic,” in Proc Conf. Appl. Technol. Archi-
tectures Protoc. Comput. Commun., 1993, pp. 183–193.

[56] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” in Proc. Conf. Commun. Architectures Protoc. Appl., 1994,
pp. 257–268.

[57] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships
of the internet topology,” in Proc. Conf. Appl. Technol. Architectures
Protoc. Comput. Commun., 1999, pp. 251–262.

[58] R. Albert, H. Jeong, and A. L. Barabasi, “InterNet: Diameter of the World-
Wide Web,” Nature, vol. 401, pp. 130–131, 1999.

[59] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions
in empirical data,” SIAM Rev., vol. 51, pp. 661–703, 2007.

[60] L. A. Adamic, “Zipf, power-laws, and pareto-a ranking tutorial,” 2000.
[Online]. Available: http://ginger.hpl.hp.com/shl/papers/ranking/ranking.
html

[61] M. E. J. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary Phys., vol. 46, pp. 323–351, 2004.

[62] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLoS One, vol. 9, no. 2, 2014, Art. no. e87357.

[63] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, and L. Sun, “Learning tai-
lored adaptive bitrate algorithms to heterogeneous network conditions: A
domain-specific priors and meta-reinforcement learning approach,” IEEE
J. Sel. Areas Commun., vol. 40, no. 8, pp. 2485–2503, Aug. 2022.

[64] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[65] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[66] Pensieve, “Neural adaptive video streaming with pensieve (sigcomm ’17),”
2023. [Online]. Available: https://github.com/hongzimao/pensieve

[67] TensorFlow.js, “Machine learning for javascript developers,” 2023. [On-
line]. Available: https://www.tensorflow.org/js

[68] A. Alomar, P. Hamadanian, A. Nasr-Esfahany, A. Agarwal, M. Alizadeh,
and D. Shah, “{CausalSim }: A causal framework for unbiased { Trace-
Driven} simulation,” in Proc. 20th USENIX Symp. Networked Syst. Des.
Implementation, 2023, pp. 1115–1147.

[69] V. Arun and H. Balakrishnan, “COPA: Practical Delay-Based congestion
control for the internet,” in Proc. 15th USENIX Symp. Networked Syst.
Des. Implementation, 2018, pp. 329–342.

[70] Facebook, “Evaluating COPA congestion control for improved video per-
formance,” 2019. [Online]. Available: https://engineering.fb.com/2019/
11/17/video-engineering/copa/

[71] S. Vargas, R. Drucker, A. Renganathan, A. Balasubramanian, and
A. Gandhi, “BBR bufferbloat in dash video,” in Proc. Web Conf.2021,
pp. 329–341.

[72] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann, “Bandwidth
prediction in low-latency chunked streaming,” in Proc. 29th ACM Work-
shop Netw. Operating Syst. Support Digit. Audio Video, 2019, pp. 7–13.

[73] T. Zhang, F. Ren, W. Cheng, X. Luo, R. Shu, and X. Liu, “Modeling and
analyzing the influence of chunk size variation on bitrate adaptation in
dash,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Dash-Industry-Forum/dash.js/
https://media.xiph.org/video/derf
https://www.ffmpeg.org/
https://www.selenium.dev/
http://nginx.org/
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://pypi.org/project/pywifi/
https://pypi.org/project/pywifi/
https://play.google.com/store/apps/details{?}id$=$make.more.r2d2.cellular_z
https://play.google.com/store/apps/details{?}id$=$make.more.r2d2.cellular_z
https://developer.android.com/reference/android/net/wifi/WifiInfo#getRssi()
https://developer.android.com/reference/android/net/wifi/WifiInfo#getRssi()
https://developer.android.com/reference/android/telephony/CellSignalStrengthLte#getRsrp()
https://developer.android.com/reference/android/telephony/CellSignalStrengthLte#getRsrp()
https://minepy.readthedocs.io/en/latest/python.html{?}highlight=mic#minepy.MINE.mic
https://minepy.readthedocs.io/en/latest/python.html{?}highlight=mic#minepy.MINE.mic
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
https://github.com/hongzimao/pensieve
https://www.tensorflow.org/js
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://engineering.fb.com/2019/11/17/video-engineering/copa/

LV et al.: ACCURATE THROUGHPUT PREDICTION FOR IMPROVING QoE IN MOBILE ADAPTIVE STREAMING 5817

[74] M. Palmer, M. Appel, K. Spiteri, B. Chandrasekaran, A. Feldmann, and
R. K. Sitaraman, “VOXEL: Cross-layer optimization for video stream-
ing with imperfect transmission,” in Proc. 17th Int. Conf. Emerg. Netw.
EXperiments Technol., 2021, pp. 359–374.

[75] X. Zuo, J. Yang, M. Wang, and Y. Cui, “Adaptive bitrate with user-level
QoE preference for video streaming,” in Proc. IEEE Conf. Comput. Com-
mun., 2022, pp. 1279–1288.

[76] H. Tianchi, Z. Chao, Z. Rui-Xiao, W. Chenglei, and S. Lifeng, “Buffer
awareness neural adaptive video streaming for avoiding extra buffer con-
sumption,” in Proc. IEEE Conf. Comput. Commun., 2023, pp. 1–9.

Gerui Lv received the BS degree in computer science
from Hunan University, Changsha, China, in 2016. He
is currently working toward the PhD degree with the
Institute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS). His research interests
lie in adaptive streaming, network transport protocol,
and Internet measurements.

Qinghua Wu received the PhD degree from
ICT/CAS, in 2015. He is currently an associate re-
searcher with ICT/CAS. His research interests lie
in network transport protocol and Internet measure-
ments.

Qingyue Tan is currently working toward the MS
degree with the Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS). Her re-
search interests lie in adaptive streaming and Internet
measurements.

Weiran Wang received the MS degree from
ICT/CAS, in 2021. Her research interests include
adaptive streaming and Internet measurement.

Zhenyu Li (Member, IEEE) received the BS degree
from Nankai University, in 2003 and the PhD degree
in Graduate School of Chinese Academy of Sciences
(CAS), in 2009. He is a professor with the Institute of
Computing Technology, CAS. His research interests
include Internet measurement and Networked Sys-
tems.

Gaogang Xie received the PhD degree in computer
science from Hunan University, in 2002. He is a pro-
fessor in the Computer Network Information Center,
Chinese Academy of Sciences. His research interests
include Internet architecture, SDN/NFV, and Internet
measurement.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 12,2024 at 18:18:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

