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Adaptive Bitrate (ABR) Streaming

❖ HTTP-based video streaming dominates the Internet traffic nowadays, 
standardized as DASH (Dynamic Adaptive Streaming over HTTP)

❖ In DASH, the player runs ABR (Adaptive Bitrate) algorithm to select bitrate for 
each chunk, in order to optimize QoE (quality of experience)
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❖ DASH player runs ABR algorithm to optimize QoE
▸ Goal: Higher quality; Lower rebuffering time; Fewer quality switches 
▸ Input: Application throughput, buffer occupancy, etc. 
▸ Output: Quality q (usually represented as bitrate level r) of chunk n
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Throughput Prediction in ABR

❖ ABR algorithms can be classified into four categories

Rate-
based

FESTIVE (CoNEXT'12)
CS2P (SIGCOMM'16)

1 Buffer-
based

BBA (SIGCOMM'14)
BOLA (INFOCOM'16)

2 Learning-
based

Pensieve (SIGCOMM'17)
Comyco (MM'19)

Stick (INFOCOM'20)

4Mixed

MPC (SIGCOMM'15)
PIA (INFOCOM'17)

Fugu (NSDI'20)

3

▸ ①③: originally require throughput prediction

▸ ②④: tend to rely on throughput prediction when deployed in real-world environments
▪ BOLA (INFOCOM'16) à DYNAMIC (MMSys'18)

▪ Pensieve (SIGCOMM'17) à ABRL (ICML RL4RealLife'19)

Accurate throughput prediction is vital to improve QoE of ABR algorithms



Harm of Inaccurate Prediction

❖ Inaccurate throughput prediction decreases QoE
▸ A real case of RobustMPC (SIGCOMM'15)
▸ Predicted Throughput = Harmonic Mean of past samples / (1 + max error rate)
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Harm of Inaccurate Prediction

❖ Inaccurate throughput prediction decreases QoE
▸ A real case of RobustMPC (SIGCOMM'15)
▸ Predicted Throughput = Harmonic Mean of past samples / (1 + max error rate)
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Harm of Inaccurate Prediction

❖ Inaccurate throughput prediction decreases QoE
▸ A real case of RobustMPC (SIGCOMM'15)
▸ Predicted Throughput = Harmonic Mean of past samples / (1 + max error rate)
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Dose Throughput Mean Network Conditions?

❖ Throughput Fluctuation

▸ Previous works attribute throughput fluctuation only to the change of network conditions

▸ However, it seems that throughput changes in the same trend as chunk size does
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Chunk throughput may be not only determined by network conditions



Our Goal

Fundamental Problem in ABR streaming: 
How to achieve accurate throughput prediction to 

assist ABR algorithms to optimize QoE?



Key Problems 

Input Features

What factors assist to 
achieve better prediction?

1

Output Target

Which one of 
throughput and delivery time

is a better target to predict?

2

Mapping Function

Which model is 
more suitable for prediction?

3

❖ A predictor contains 3 components
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠



Solution

Identify Features

Qualitative Analysis
Quantitative Verification

1

Select Target & Model

Controlled Experiment

2

Implement Predictor

Design Principle
Real-world Deployment

3

❖ Correspondingly, our solution includes 3 steps 
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Identify Features

❖ Academic research evolves in this area

Throughput

Slow-start 
Restart

Link Capacity

Background 
Traffic

Background traffic makes it hard to 
predict chunk throughput2012



Identify Features

Throughput

Slow-start 
Restart

Link Capacity

Background 
Traffic

Connection 
Status

Physical 
Property

Connections with similar status
exhibit similar throughput patterns2016

❖ Academic research evolves in this area



Identify Features

Throughput

Slow-start 
Restart

Link Capacity

Background 
Traffic

Traffic Policing

Connection 
Status

Physical 
Property

Traffic Policing impacts video 
throughput2016

❖ Academic research evolves in this area



Identify Features

Throughput

Slow-start 
Restart

Chunk Size

Link Capacity

Background 
Traffic

Traffic Policing

Connection 
Status

Physical 
Property

Delivery Time

Chunk size is useful to predict 
delivery time2020

❖ Academic research evolves in this area



Identify Features
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Delivery Time
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❖ Theoretical Framework: all factors impacting throughput and delivery time



Identify Features

Throughput
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Our work is the first to distinguish
application throughput and available bandwidth

in video streaming

❖ Theoretical Framework: all factors impacting throughput and delivery time



ON-OFF Period in Video Streaming

❖ ON-OFF: A unique behavior of video streaming

▸ Player requests for chunks periodically rather than continuously after the start-up phase

❖ Slow-start Restart

▸ If OFF period exceeds a timeout (200ms in Linux), the server will reset cwnd to its initial size, 
and return to slow-start phase for the next transmission

❖ Player's State

▸ Buffering State: cwnd is adjusted continuously in subsequent chunks

▸ Steady State: slow-start restart occurs when delivering each chunk



Collect Dataset

❖ Automated video streaming measurement platform

▸ Video: Elephant Dream & Big Buck Bunny at [300, 750, 1200, 1850, 2850, 4300] Kbps

▸ Client: based on Selenium to automictically control Chrome browser to run dash.js player

▸ Server: deployed on cloud servers in 3 cities, hosting video contents and HTML & JS codes

Server

Nginx

Video chunks

HTML & JS

MPD file

Client

Python
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Google Chrome

dash.js

ABR
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Constant
Quality

Rule

auto

ctrl

Real-world Internet
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Client Network
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Collect Dataset

❖ Automated video streaming measurement platform

▸ Collected information

Constant bitrate rule & ABR rules

Playback Information
chunk size, delivery time, application throughput, 
buffer level, inactivity time, rebuffering time, etc.

Signal Strength
WiFi RSSI, 4G RSRP & SINR

Client Player

tcp_probe

TCP Information
cwnd size, ssthresh, 

smoothed RTT, inflight size, etc.

Server Transport Layer

We collected data of 2500+ video sessions, containing 300,000+ video chunks
from 2019.12.30 to 2021.05.18



Identify Features

❖ Observation 1: Throughput of last chunk and target chunk size are the two 
most important factors in throughput prediction

How does video chunk size affect application throughput?



Identify Features

❖ Observation 2: Correlation between throughput and chunk size is deeply 
affected by player's state, relative chunk index, and signal strength of the 
client

▸ 1. Player's state
▪ The correlation in the Steady-State is higher than that in the Buffering-State
▪ The correlation decreases as relative chunk index increases



Identify Features

❖ Observation 2: Correlation between throughput and chunk size is deeply 
affected by player's state, relative chunk index, and signal strength of the 
client

▸ 2. Bitrate level
▪ The correlation becomes lower as the bitrate increases



Identify Features

❖ Observation 2: Correlation between throughput and chunk size is deeply 
affected by player's state, relative chunk index, and signal strength of the 
client

▸ 3. Network condition
▪ Downstream bandwidth of the server
▪ Wireless signal strength of the client

Application throughput is determined by both available bandwidth and delivery rate



Identify Features

Player's State

relative index of the last chunk

1

Chunk Information

bitrate & size of the last chunk 
bitrate & size of the target chunk

2

Network conditions

max throughput of past chunks 
max delivery time of past chunks

connection type
throughput of the last chunk

3

❖ Features of Predictor



Solution

Identify Features

Qualitative Analysis
Quantitative Verification

1

Select Target & Model

Controlled Experiment

2

Implement Predictor

Design Principle
Real-world Deployment

3

❖ Correspondingly, our solution includes 3 steps 



Select Target & Model

❖ Output Target: Throughput and Delivery Time can be converted to each other 
with chunk size given

▸ Throughput: corresponding to bitrate (output of ABR algorithms)

▸ Delivery Time: used to calculate QoE (target of ABR algorithms)

❖ Mapping Function: Data-driven methods

▸ Multiple Linear Regression (MLR)

▸ Decision Trees

▸ Deep Neural Networks (DNN)
▪ Effective, however heavyweight and short of interpretability, and thus hard to deploy[1][2]

[1] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “Pitree: Practical implementation of abr algorithms using decision trees”, MM, 2019
[2] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting deep learning-based networking systems”, SIGCOMM, 2020



Select Target & Model

❖ Controlled Experiment

▸ Target: Throughput Predictor vs. Delivery Time Predictor

▸ Model: Decision Tree Predictor vs. MLR Predictor

❖ Metric: Absolute Normalized Prediction Error

𝐸𝑟𝑟 𝐷𝑇𝑖𝑚𝑒 =
1
𝑁
6
!"#

$ 7𝐷𝑇! − 𝐷𝑇!
𝐷𝑇!

* The predicted throughput is converted to delivery time for comparison with the directly predicted delivery time

Throughput Delivery Time

Decision Tree Tree-Thput Tree-DTime

MLR MLR-Thput MLR-DTime



Select Target & Model

• Observation 3: Throughput prediction achieves better accuracy than delivery 
time prediction does

* The predicted throughput is converted to delivery time for comparison with the directly predicted delivery time



Select Target & Model

❖ Observation 3: Throughput prediction achieves better accuracy than delivery 
time prediction does

▸ The long-tailed distribution of delivery time causes data-driven predictors tend to 
overestimate the real values
▪ 0.8% of chunks lie in the 95% tail of time interval (from 10s to 208s)

▸ Delivery time predictors perceive prediction error of over 100% for more chunks (6.6%∼12.4%) 
than throughput predictors (1.7%∼3.0%)
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Solution

Identify Features

Qualitative Analysis
Quantitative Verification
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Select Target & Model

Controlled Experiment
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3

❖ Correspondingly, our solution includes 3 steps 



Key Problems 

Input Features

What factors assist to 
achieve better prediction?

1

Output Target

Which one of 
throughput and delivery time

is a better target to predict?

2

Mapping Function

Which model is 
more suitable for prediction?

3

❖ A predictor builds a map between input and output, containing 3 components
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠



Implement Predictor

Input Features

What factors assist to 
achieve better prediction?

1

Output Target

Which one of 
throughput and delivery time

is a better target to predict?

2

Mapping Function

Which model is 
more suitable for prediction?

3

Lumos: decision-tree-based throughput predictor for ABR streaming

❖ Design Principle 

Player's State
Chunk Information
Network Conditions

Throughput Decision Trees



Lumos Mechanism

❖ Train

▸ Method: Classification and Regression Tree (CART)
▪ Regression tree
▪ Loss function: mean squared error (MSE)

▸ Dataset: 700+ ABR video sessions in the real world, containing 69,000+ chunks
▪ Training set accounts for 70%
▪ Data of various combinations of network conditions is balanced 

▸ Optimization: 
▪ Prepruning and cost complexity pruning
▪ Exhaustive grid search
▪ K-fold cross validation

❖ Deploy

▸ Parameters of Lumos models are dumped in JavaScript, loaded in dash.js player



Lumos with ABR algorithms

❖ Lumos as a plug-in of ABR algorithms

replace HM predictor
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Evaluation Setup

❖ Baselines
▸ Predictors 

▪ Lumos / MLR / HM / Robust-HM
▸ ABR algorithms

▪ RB (CoNEXT'12) / MPC & RobustMPC (SIGCOMM'15) / BBA (SIGCOMM'14) / Pensieve (SIGCOMM'17)

❖ Environment: Real-world Internet
▸ On our video streaming measurement platform
▸ ~300 sessions under various network environments

▪ Downstream bandwidth of the server: 50Mbps / 5Mbps
▪ Connection types: WiFi / 4G
▪ Signal strength: Strong / Middle / Weak

❖ Metrics
▸ Prediction accuracy of predictors

▪ Prediction Error / Mean Squared Error (MSE)
▸ QoE performance of ABR algorithms

▪ Higher quality / Lower rebuffering time / Fewer quality switches



Evaluation in real-world Internet

❖ Prediction Accuracy

▸ Lumos reduces prediction error by 16.8%∼38.7%, and MSE by 49.6%∼72.8%

▸ Strong signal strength of WiFi: prediction error is only 7.4% in average
▪ 57.7%∼74% and 78.5%∼90.5% improvement of the two metrics than others

▸ Weak signal strength where network is hard to predict: improve prediction accuracy over 
the two metrics by 9.1%~28.9% and 17.8%~61.7% respectively
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Evaluation in real-world Internet

❖ The Advantage of Lumos over HM (Harmonic Mean)

▸ Aware of network conditions and player's state: start-up phase

▸ Consider the fluctuation of chunk sizes: strong signal strength

▸ React quickly to bandwidth fluctuation: weak signal strength
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Lumos can distinguish the change of network conditions and application behavior



Evaluation in real-world Internet

❖ QoE of Lumos-assisted ABR Algorithms

▸ with MPC: improve QoE by 6.3% over MPC and 8.7% over RobustMPC

▸ with RB / BBA: reduce rebuffering time by 86.3% and 37.5%, and improve bitrate by 3.3%
and 1.3%, compared with RB and BBA respectively 

▸ vs. Pensieve: MPC+Lumos improves QoE by 19.2% in average
▪ Difference between Pensieve's simulator and the real world



Summary

❖ Contributions

▸ We construct a theoretical framework containing all the impacting factors in predicting 
throughput and delivery time for video streaming, and distinguish application throughput
from available bandwidth for the first time.

▸ We build a real-world video streaming measurement platform, and collect dataset 
containing 2500+ sessions. By data analysis and controlled experiments, we find that:
▪ Strong correlation exists between chunk size and throughput. This correlation is deeply affected 

by player's state, relative chunk index, and signal strength of the client. 
▪ Throughput is a better prediction target than delivery time in terms of prediction error for 

data-driven predictors.

▸ We propose Lumos, a decision-tree-based accurate throughput predictor for ABR 
streaming. As a plug-in, Lumos assists ABR algorithms to achieve better QoE.
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Q&A

Presented by Gerui Lv from ICT, CAS


