
Lumos: towards Better Video Streaming QoE
through Accurate Throughput Prediction

Gerui Lv1,2,*, Qinghua Wu1,2,3,*, Weiran Wang1,2, Zhenyu Li1,2,3 and Gaogang Xie2,4

1Institute of Computing Technology, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China 3Purple Mountain Laboratories, China

4Computer Network Information Center, Chinese Academy of Sciences, China
Email: {lvgerui, wuqinghua, wangweiran, zyli}@ict.ac.cn, xie@cnic.cn

Abstract—ABR algorithms dynamically select the bitrate of
chunks based on the network capacity. To estimate the network
capacity, most ABR algorithms use throughput prediction while
recent works start to leverage delivery time prediction. We in
this paper examine all components of the predictor for ABR
algorithms, i.e., input features, mapping function and output
target. We build an automated video streaming measurement
platform, and collect extensive dataset under various network
environments, containing 2500+ video sessions. Through analysis,
we find that most of previous works failed to achieve accurate
prediction due to ignoring how application behavior influences
application throughput, e.g., the strong correlation between
chunk size and throughput. Then we identify underlying factors
affecting this correlation, and consider them as features for more
accurate prediction. Moreover, we show that throughput is a
better target for data-driven predictors than delivery time in
terms of prediction error, due to the long tail distribution of
delivery time. Based on those above, we propose a decision-
tree-based throughput predictor, named Lumos, which acts as
a plug-in for ABR algorithms. Extensive experiments in real-
world Internet demonstrate that Lumos achieves high prediction
accuracy and improves the QoE of ABR algorithms when
integrated into them.

I. INTRODUCTION

HTTP-based video streaming (standardized as DASH [1])
currently accounts for the majority of the Internet traffic [2]. In
DASH systems, each video is encoded into multiple versions
with the same content but different average bitrates (i.e.,
quality). Each version of video is then segmented into chunks
with equal duration (usually 2-10 seconds). Video client runs
adaptive bitrate (ABR) algorithms to select bitrate of each
chunk based on network capacity and client buffer occupancy,
in order to maximize Quality of Experience (QoE), including
maximizing video quality and minimizing rebuffering time and
quality switch.

Most ABR algorithms use throughput prediction to estimate
network capacity [3]–[10]. As an alternative, recent work [11]
advocates to predict delivery time of chunks for better QoE.
Naturally, two key problems about prediction in ABR algo-
rithms emerge:

1) Input features: what factors assist to achieve better
prediction? Take throughput for example, the throughput per-
ceived by application is affected by both network conditions

*Co-first authors

and application behavior [12]–[14]. Traditional throughput
predictors for video streaming, whether history-based [3], [10],
[15] or learning-based [5], consider throughput fluctuation
only as change of network conditions. Recent works [8], [11]
start to consider chunk size into prediction. However, chunk
size could not represent all application behaviors, such as ON-
OFF period [12], [13]. Moreover, none of prior works has
investigated how all possible impacting factors exactly affect
throughput.

2) Output target: which one of throughput and delivery time
is a better target to predict? Since throughput and delivery
time can be converted to each other with chunk size given,
the two indicators are regarded as the same in representing
network capacity. However, while throughput is corresponding
to bitrate selection, delivery time is directly used to calculate
QoE, it is intuitive to regard delivery time as a more effective
indicator for ABR algorithms. There has been no previous
work quantitatively comparing these two indicators.

This paper aims to design a better predictor for ABR
algorithms by tackling these two problems, and achieves the
following contributions:
• We conceptually summarize (§II) and quantitatively verify

(§III) all the impacting factors in predicting throughput and
delivery time. By analyzing an extensive dataset collected in
real-world Internet using our video streaming measurement
platform, we make the following observations. Available
bandwidth of network is different from application through-
put of chunks due to the behavior of video streaming.
Specifically, strong correlation exists between chunk size
and throughput, which most of previous works overlooked,
leading to inaccurate prediction of throughput. In fact, this
correlation is deeply affected by the state of client player,
the chunk index, and the signal strength of the mobile
client platform, all of which should be considered for more
accurate prediction of throughput.

• We found that throughput is a better prediction target than
delivery time in terms of prediction error (§IV-A). By con-
sidering all the considered impacting factors, we construct
two data-driven predictors (decision trees and multiple linear
regression), to predict the two targets. Experimental results
show that predictors for delivery time has relatively larger
prediction error, due to the long tail distribution of delivery

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 650

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

69
48

time.
• We propose Lumos, a decision-tree-based accurate predictor

of throughput (§IV), which could be integrated into ex-
isting ABR algorithms to improve the prediction accuracy
of throughput for better QoE. Three Lumos-assisted ABR
algorithms (RB [3], MPC [4], BBA [16]) are evaluated in
our real-world video streaming platform (§V). Experimental
results indicate that Lumos achieves much better prediction
accuracy and Lumos-assisted ABR algorithms outperform
the original algorithms in QoE. Moreover, MPC+Lumos
improves average QoE by 6.3% over original MPC, and
even 19.2% over Pensieve [17], a state-of-the-art learning-
based ABR algorithm.

II. BACKGROUND AND MOTIVATION

Background: ABR algorithms determine the bitrate of
each video chunk according to the information of network and
client obtained when retrieving previous chunks. Existing ABR
algorithms can be classified into four categories: rate-based
(e.g., [3], [5]), buffer-based (e.g., [16], [18]), mixed (e.g.,
[4]) and learning-based (e.g., [17]). Rate-based approaches
and buffer-based approaches select the bitrate according to
the predicted throughput and the buffer occupancy of the
video player, respectively. Mixed approaches select the bi-
trate according to both throughput and buffer level, which
are also taken as input in learning-based approaches. Note
that rate-based and mixed approaches originally requires ex-
plicit throughput prediction. Besides, even buffer-based and
learning-based approaches tend to rely on throughput pre-
diction when they are deployed in real-world environments,
e.g., the change from BOLA [18] to DYNAMIC [7] and from
Pensieve [17] to ABRL [9]. Under this circumstance, accurate
prediction of throughput (as well as delivery time) is vital to
improve the QoE of video streaming.

Throughput

Delivery Time

Slow-start
Restart

Relative
Chunk Index

Link Capacity

Chunk Size

Background
Traffic

Traffic Policing

Connection
Status

Player’s State

Physical
Property

Delivery Rate

Available
Bandwidth

Fig. 1: Factors impacting chunk throughput and delivery time

Fig. 1 shows all factors impacting throughput and thus
delivery time of chunks, as well as their relationships. As
delivery time can be calculated from application throughput
with chunk size given1, the factors impacting throughput nec-
essarily impact delivery time. Therefore, we focus on all the
factors directly impacting application throughput. Application
throughput is determined by both available bandwidth of the

1The application throughput of a chunk is calculated as the chunk size
divided by the delivery time. The delivery time is the duration from the time
when the first byte of the request is made to the time when the last byte of
the response is received [10].

bottleneck link and delivery rate of the application [14]. Avail-
able bandwidth is equal to link capacity minus background
traffic, and link capacity is further determined by physical
property of the link, traffic policing [19] and connection status
between the server and the video player (e.g., ISP, AS [5],
CDN layer [10], connection type and signal strength [20]). As
for delivery rate, which is controlled by cwnd of the server, es-
sentially depends on both available bandwidth and application
behavior. The ON-OFF period is the unique behavior of video
streaming [12], [13], indicating that the player requests for
chunks periodically rather than continuously after the start-
up phase. During the inactivity time of the player (i.e., the
OFF period), no data is transferred between the player and
the server. If the inactivity time exceeds a timeout (200ms
in Linux), the server resets the cwnd to the initial size (e.g.,
10MSS), and returns to the slow-start phase [13], which is
named slow-start restart [17], [21]. Due to the application
behavior and transport mechanism, the request pattern of video
player can be divided into two states [12]: the Buffering-State,
in which cwnd is adjusted continuously in subsequent chunks
and the Steady-State in which slow-start restart occurs when
retrieving each chunk.

0
1
2
3
4

0

10

20

30

40

79 80 81 82 83 84 85 86 87 88 89

Q
ua

lit
y

Le
ve

l

Th
ro

ug
hp

ut
 (M

bp
s)

Chunk Index

Real Throughput Predicted Throughput Ideal Quality Selected Quality

(a) Inaccurate throughput prediction decreases video quality

0
500
1000
1500
2000
2500

0

10

20

30

40

79 80 81 82 83 84 85 86 87 88 89

C
hu

nk
 S

iz
e

(K
B

)

Th
ro

ug
hp

ut
 (M

bp
s)

Chunk Index

Real Throughput Chunk Size

(b) Chunk size and real throughput

Fig. 2: A case of RobustMPC

Motivation: For both existing ABR algorithms and wildly
deployed video service, a large gap exists between the bitrate
that ABR selects and the available bandwidth [22], [23].
As an example, a real case of a classical ABR algorithm
(RobustMPC [4]) is present to show how inaccurate prediction
of throughput does harm to QoE. Fig. 2a shows that if the real
throughput of one chunk suddenly falls (at the 81st chunk), the
predicted throughput of next chunk by RobustMPC will fall
as well; but when the real throughput of chunks rises in the
future (from the 82nd chunk), the predicted throughput can not
react to the change in time. Although the real throughput is
high enough for the highest bitrate (not shown in the figure),
RobustMPC keeps selecting lower bitrate for 3 consecutive
chunks, resulting in unnecessary video quality reduction and
fluctuation, and thus degenerated QoE.

One will usually attribute throughput plummeting in Fig. 2a

651

only to fluctuation of network bandwidth, and believes that
throughput is difficult to predict [16]. This is partly caused by
confusing application throughput with available bandwidth, as
many prior works do [3], [5], [17], [24]. However, as illustrated
in Fig. 1, many factors that influence throughput are ignored
in most exiting prediction schemes. For instance, as shown in
Fig. 2b, it seems that throughput changes in the same trend
as chunk size does, which was also mentioned in prior works
[11], [13]. This indicates that variation of application perceived
throughput may be not dominated by network conditions as
considered before. Although throughput prediction of video
streaming has already been widely investigated [5], [10]–[13],
[15], [22], there still lacks of a deep understanding of this
issue, which motivates our work in this paper.

III. PREDICTION FACTORS

In this section, we investigate the factors by which better
prediction is achieved, to select input features for the predictor.
We first describe our automated video streaming measurement
platform, and the extensive dataset of video streaming col-
lected through this platform in real-world Internet (§III-A).
By analyzing the collected dataset, we identify the impacting
factors that affect the throughput of video chunks, and quanti-
tatively characterize how they assist in throughput prediction
(§III-B). After that, we reveal the correlation between through-
put and chunk size, and the impact of various factors on this
correlation (§III-C).

A. Collecting Dataset

To collect dataset for analysis, we build an automated video
streaming measurement platform following DASH specifica-
tion. The platform consists of the client which runs the video
player, and the server which stores video contents.

Video content: We select Elephant Dream and Big Buck
Bunny, 2 raw videos from [25]. Each of them is around
10 minutes. We use FFmpeg [26] to encode them by the
H.264/MPEG-4 codec at bitrates in [300, 750, 1200, 1850,
2850, 4300] Kbps, which correspond to resolutions [144p,
240p, 360p, 480p, 720p, 1080p] (consistent with [8], [17]).
For the video at each bitrate, we encode it into two versions,
with a 2-second or 4-second chunk duration respectively. Each
version of the video is indexed by a Media Presentation
Description (MPD) file generated by MP4Box [27].

Video client: We use Google Chrome browser running
dash.js as the video player, and develop Python scripts based
on Selenium [28] to automatically control the browser to
imitate the requesting and playing behavior of users. The
scripts run on Windows laptops, which are connected with
APs by WiFi (2.4GHz or 5GHz band), or 4G hotspots by
USB.

Video server: We use Nginx server [29] to host video
contents and dash.js player, which runs in 3 distinct cloud
servers located in 3 cities running Ubuntu 16.04, with varied
downstream bandwidth (5Mbps or 50Mbps). We also deploy
scripts on the server to interact with the client. Note that the
measurement platform is deployed in real-world environment.

Thus, we run tests in the wild Internet, instead of in the
emulator with constant throughput traces.

Methodology: A test contains several sessions. (1) Before
a test starts, we record connection type and signal strength
of the client. Since we only aim to conduct tests rather
than to implement a complete production system, we simply
input the connection type manually into the scripts2. As for
signal strength, RSSI for WiFi is automatically obtained by
pywifi [31] in the scripts, while RSRP and SINR for 4G
are manually fetched from Cellular-Z [32]3. To eliminate the
impact of mobility, we conduct tests with the client staying
still. (2) To obtain data of chunks at all bitrates in one test, we
implement a custom rule in dash.js, which selects a constant
bitrate in the whole video session4. Before each session starts,
the output bitrate in the custom rule will be increased to the
next available level by scripts on the server. Then, the client re-
quests for codes of dash.js player from the server, and starts the
video session. In this way, all the six bitrates can be traversed
in a test with six sessions. (3) During each session, we collect
information from both the player on the client and the TCP/IP
stack on the server. The client records playback information
of each chunk via the custom rule, including chunk size,
buffer level, delivery time, inactivity time, rebuffering time
and application throughput. The server captures information
of TCP connection via tcp probe in Linux kernel, including
cwnd size, ssthresh, smoothed RTT and inflight size. We
conduct extensive tests for each combination at different time
(morning, noon, afternoon or evening), in different locations
(4 cities for the client) and with different access network types
(4G or WiFi), to cover different usage scenarios as many as
possible. In all, we collected data of 2500+ video sessions
(800+ with constant bitrate and 1700+ with ABR algorithms),
containing 300,000+ video chunks.

B. Factors that Impact Throughput Prediction

To figure out how factors listed in Fig. 1 contribute to
throughput prediction of video chunks, we evaluate mutual
information [35], [36] between throughput and these factors.
Since physical property and background traffic of the link can
not be obtained accurately, we use past throughput samples
(e.g., throughput of the last chunk) to roughly estimate their
effects, which are widely used to predict throughput in ABR
algorithms. We use downstream bandwidth of the server to
indicate traffic policing (§III-A). As for connection status,
prior works focus on features of the whole network, e.g.,
information of ISP, AS [5] and CDN [10]. However, these
information can not directly describe the network environment
of the client, but also is hard for the client to obtain, especially
under DASH specification. Hence we select respective factors
of the client side, i.e., connection type and signal strength [20],

2Connection type can be accessed in dash.js through Network Information
API [30]. However, this experimental API is not supported by desktop
browsers when we build this platform.

3In practice, signal strength of WiFi and 4G can be accessed through
specific Android APIs, e.g., [33], [34].

4We also implement several existing ABR algorithms for training and
testing, see §IV-B and §V.

652

to characterize connection status (§III-A). For comparison, we
classify signal strength into three categories (strong, middle
and weak), according to RSSI of WiFi and RSRP of 4G.
Besides, we set the inactivity time to 200ms to distinguish the
two states of the player, which are indicated by the relative
index. The relative index of each chunk is increased by chunk
in the Buffering-State; otherwise it stays 0.

The mutual information between throughput and each con-
sidered factor is shown in Fig. 3. Note that mutual information
does not have an upper bound.

0.0 0.2 0.4 0.6 0.8 1.0
Mutual Information

Connection Type
Target Bitrate

Relative chunk index
Signal Strength

Target chunk size
Throughput of last chunk

0.082
0.168
0.180
0.197

0.540
1.008

Fig. 3: Mutual information between throughput and its impact-
ing factors

Observation 1: Throughput of last chunk and target
chunk size are the two most important factors in throughput
prediction.

Previous works which only consider past throughput sam-
ples, e.g., [3], fail to achieve accurate throughput prediction
due to their ignorance of target chunk size. This result distin-
guishes application throughput from available bandwidth since
the former varies with different chunk size. Although other
factors contribute less to predict throughput directly, we argue
that integrating them leads to better prediction accuracy, which
is investigated in next subsection.

C. Correlation between Throughput and Chunk Size

Prior works have reported that application throughput is
related to chunk size [12], [13]. To investigate this relation-
ship, we use maximal information coefficient (MIC) [37] to
calculate the correlation between throughput and chunk size,
and find this correlation affected by client player’s state, bitrate
level, and network condition.

Observation 2: Correlation between throughput and
chunk size is deeply affected by player’s state, relative chunk
index, and signal strength of the client.

Steady Buffering
Player's State

0.0

0.5

1.0

M
IC

 o
f C

hu
nk

s

0.776

0.506

(a)

1 2 3 4
Relative Chunk Index

0.0

0.5

1.0

M
IC

 o
f C

hu
nk

s

0.706
0.585 0.512 0.464

(b)

Fig. 4: Correlation of throughput and chunk size varies in
different player’s states

1) Player’s state: To investigate the impact of player’s
state on the correlation, we only focus on data from the best

network conditions, i.e., under strong signal strength with
50Mbps downstream bandwidth, where network capacity is
sufficient for delivery with the highest bitrate. Fig. 4a shows
that the correlation in the Steady-State is higher than that in
the Buffering-State. This is because cwnd in the Steady-State
increases from the initial value independently for each chunk
(§ II), before congestion is triggered, larger chunk size leads
to larger cwnd size, and thus higher throughput.

We further analyze how the correlation is affected by the
relative chunk index in the Buffering-State. Fig. 4b shows that
correlation decreases as relative chunk index increases. This is
caused by subsequent chunks continuously augmenting cwnd
as well as the delivery rate, eventually up to the available
bandwidth before the Buffering-State ends.

2) Bitrate level: Fig. 5a (only Steady-State under strong
network with 50Mbps downstream bandwidth) shows that the
correlation becomes lower as the bitrate increases. The reason
is similar to the above: chunk size of high bitrates is large
enough for cwnd to ramp up to a large size, where the
delivery rate of the server reaches the available bandwidth.
As a consequence, the incoming congestion events prevent
application throughput from increasing with chunk size.

3) Network condition: We conduct tests in different network
conditions to investigate how the correlation is affected by
traffic policing and connection status.
• Downstream bandwidth of the server: We limit the down-

stream bandwidth of the server to 50Mbps and 5Mbps
respectively and show the impact of traffic policing on
the correlation in Fig. 5b (only Steady-State under strong
signal). We find that the correlation under low downstream
bandwidth is much lower than that under high downstream
bandwidth, as delivering a chunk under low downstream
bandwidth will more easily affected by traffic policing (e.g.,
token bucket).

• Wireless signal strength of the client: Fig. 5c presents the
impact of signal strength on the correlation (only Steady-
State with 50Mbps bandwidth). When signal strength gets
weaker, the correlation becomes smaller correspondingly.
To explain this observation, we analyze data collected from
the transport layer by tcp probe, and find that when signal
strength is weak, smoothed RTT tends to be longer for the
larger chunks (especially of the higher bitrates, not shown),
which directly leads to an increase in delivery time, and
further a decline in throughput.
These results all indicate that application throughput is

determined by both available bandwidth affected by network
conditions and delivery rate affected by application behavior.
Previous works conclude that throughput is positively corre-
lated to chunk size, but we argue that this correlation is heavily
affected by the player’s state, video bitrate and network condi-
tions in real world. Thus, when predicting throughput, taking
these factors into consideration will improve the accuracy.

IV. LUMOS: DESIGN AND IMPLEMENTATION

Our observations in §III indicate that by involving specific
information, more accurate prediction of application through-

653

300 750 1200 1850 2850 4300
Bitrate (Kbps)

0.5

1.0
M

IC
 o

f S
es

sio
ns

(a) Correlation under different bitrates

50 5
Downstream bandwidth (Mbps)

0.5

1.0

M
IC

 o
f S

es
sio

ns

(b) Correlation under different bandwidth

strong middle weak
Signal strength

0.5

1.0

M
IC

 o
f S

es
sio

ns

(c) Correlation under different signal strength

Fig. 5: Correlation of throughput and chunk size varies under different factors (with 95% confidence)

put can be achieved. Based on that, we propose Lumos, a
throughput predictor for video chunks in adaptive streaming.
In this section, we introduce the design choice (§IV-A) and
details (§IV-B) of Lumos, and show how Lumos is integrated
into existing ABR algorithms as a plug-in (§IV-C).

A. Design Choice

As a predictor for ABR algorithms, Lumos aims to build
a faithful map between input features and output predictions.
To achieve this goal, two questions in designing Lumos arise:

1) Mapping function: which model is more suitable for
prediction of throughput in video streaming?

State-of-the-art mapping functions are built by data-driven
methods, including three off-the-shelf models: multiple linear
regression (MLR), decision trees and Deep Neural Networks
(DNNs). Although DNNs are qualified for accurately modeling
sophisticated behavior, prior studies show that they are heavy-
weight and short of interpretability [9], [38], [39], and thus
hard to design and deploy. On the contrary, recent works [39],
[40] show the rich expressiveness and high interpretability of
decision trees for sophisticated policies, proving that decision
trees are simple yet powerful enough to fit complex functions
for prediction. For this reason, we develop predictors based
on decision trees, and also MLR for comparison.

2) Output target: Which one of throughput and delivery time
is a better target to predict?

Both throughput and delivery time can represent how soon
the next chunk will be available in the playback buffer. Given
the chunk size, each of the two targets can be calculated di-
rectly from the other. Most previous works (e.g., FESTIVE [3])
utilize predicted throughput to select bitrate, while recent ones
(e.g., Fugu [11]) advocate that delivery time is a better choice.

To investigate these two questions, we develop different
predictors based on decision trees and MLR for each pre-
diction target separately, and evaluate their performance on
prediction. These predictors are developed mainly following
the methodology described in §IV-B5, only without the two
improvements of Lumos.

Prediction Metrics: For both of throughput and delivery
time, the more accurately they can be predicted, the more
precisely ABR algorithm could select bitrate for better QoE
[5], [11], [41]. Thus, we use prediction accuracy to evaluate
the performance of the two targets. Following [5], [10], we

5For delivery time predictors, the feature throughput of the last chunk is
replaced by delivery time of the last chunk.

select Absolute Normalized Prediction Error Err (prediction
error for short) as the metric, defined as Eq. 1.

Err(DTime) =
1

N

N∑
k=1

|D̂T k −DTk|
DTk

, (1)

where D̂T k and DTk denote the predicted value and the real
value of delivery time of chunk k respectively, and N denotes
the number of chunks in a session. The predicted throughput
is converted to delivery time for comparison with the directly
predicted delivery time.

Tree-DTime MLR-DTime Tree-Thput MLR-Thput
0.00

0.25

0.50

Pr
ed

ic
tio

n
Er

ro
r

Fig. 6: Prediction error of the four considered predictors

Fig. 6 shows that decision trees (Tree for short) perform
better than MLR does in prediction. More importantly, for
both the two types of models, compared with delivery time
prediction, throughput prediction has lower prediction error
(34.7%∼50.7% reduction). Thus, we have the following ob-
servation.

Observation 3: Throughput prediction achieves better
accuracy than delivery time prediction does.

The first question is why prediction error of throughput
predictors is lower. Prediction error is a metric to measure
how much the target is overestimated or underestimated.
For both delivery time and throughput, the prediction error
of underestimation is no more than 100%, while that of
overestimation could exceed 100%. Thus, overestimation is
the key factor in increasing prediction error. Fig. 7 shows
the distribution of prediction error of each video chunk (not
session). Delivery time predictors perceive prediction error of
over 100% for more chunks (6.6%∼12.4%) than throughput
predictors (1.7%∼3.0%). This result indicates that delivery
time predictors overestimate delivery time more seriously than
throughput predictors do, leading to higher prediction error.

The second question is why delivery time predictors tend
to overestimate. We infer that the root cause is the long-tailed
distribution of delivery time. As shown in Fig. 8, delivery time
is more long-tailed, with 0.8% of chunks lying in the 95% tail
of time interval (from 10s to 208s). This phenomenon is known

654

0 1 10
Prediction Error of Chunk

0
0.2
0.4
0.6
0.8

1
CD

F Tree-DTime
MLR-DTime
Tree-Thput
MLR-Thput

Fig. 7: CDF of prediction er-
ror of video chunks by vari-
ous predictors

0 1 10 100
Throughput (Mbps) or Time (s)

0
0.2
0.4
0.6
0.8

1

CD
F

Delivery Time
Throughput

Fig. 8: CDF of delivery
time and throughput of video
chunks

0
1
2
3
4

28 29 30 31 32 33 34 35 36 37 38D
el

iv
er

y
Ti

m
e

(s
)

Chunk Index

Real Time Tree-DTime Prediction MLR-DTime Prediction
Tree-Thput Prediction MLR-Thput Prediction

Fig. 9: A case of predicting delivery time by various predictors

as a character of the wild Internet, which is also mentioned in
prior work [11]. For both regression decision trees and MLR,
the models are determined by distribution of data. Delivery
time predictors learn higher values due to the long tail of
distribution of delivery time, and thus overestimate the real
values, as shown in Fig. 9. Contrastingly, the distribution
of throughput is more ”uniform”. As a result, throughput
predictors are able to faithfully learn the characters of most
data, avoiding being affected by outliers. Although we may
improve delivery time predictors by filtering outliers offline,
our goal is to design a faithful predictor performs well in
real world, where the distribution of all data is unknown in
advance. In this way, predicting throughput is a better choice.

B. Lumos Mechanism

In this subsection, we describe how to design, train and
implement Lumos.

1) Design: Training decision trees is a supervised learning
process. Since the values of throughput are continuous, we
use regression trees. We select the input features for models
following the observations in §III. Since information of some
features can not be directly accessed by the client (e.g., down-
stream bandwidth of the server), we use other forms of features
to approximate them. These features are divided into three
categories as follows.

• Network condition: including (1) maximum of throughput
of past t chunks to estimate limited bandwidth [14], (2)
maximum of delivery time of past t chunks, (3) connection
type (WiFi or 4G) of the client, and (4) throughput of the
last chunk;

• Player’s state: including (5) relative index of the last chunk,
which indicates player’s state by 0 for the Steady-State and
others for the Buffering-State;

• Chunk information: including (6) bitrate and (7) size of last
chunk, and (8) bitrate and (9) size of the target chunk.

We find that in real-world environment, it is hard for a single
decision tree to fit throughput of all chunks due to its wide
range of distribution (2.0Kbps∼84.7Mbps in our dataset). For
this reason, we develop Lumos with two extra improvements
as follows.
• Separate predictor for each network environment: As shown

in Fig. 10, we divide network environment into three cat-
egories according to signal strength of the client (§III-B),
and train a specific model for each type of network respec-
tively. Note that we are not saying this classification is the
best choice, but handling with distinct network conditions
separately helps the model achieve better performance [8].

• Logarithm value of throughput as labels: Since the through-
put values lie in a wide range across 5 orders of magnitude,
we use the logarithm value of throughput as label instead
of original value.

0 20 40 60 80
Application Throughput (Mbps) of Chunk

0
0.2
0.4
0.6
0.8

1

CD
F

strong
middle
weak

Fig. 10: Throughput under different signal strength
2) Training and Implementation: We train decision tress by

Classification and Regression Tree (CART) [42]. CART uses
mean squared error (MSE) as loss function for regression tress,
and generates trees by minimizing MSE between predicted
values and real values. We apply both prepruning and cost
complexity pruning [42] to prune trees from overfitting. To
identify optimal pruning parameters, we adopt exhaustive grid
search and K-fold cross validation to select best model. We use
sklearn [43] to implement decision trees of Lumos, and dump
parameters of trained models in JavaScript so that Lumos
models can be loaded in dash.js. Video dataset is same to that
deployed on our measurement platform §III-A. We select data
from 700+ video sessions (running ABR algorithms, not se-
lecting constant bitrate) collected in real world, which contain
69,000+ chunks, to train and test Lumos. 70% of all sessions
are used as training set. Since imbalanced dataset harms
the performance of decision trees [39], we balance the data
of various combinations of network conditions (downstream
bandwidth and connection type); i.e., for each class of signal
strength, the count of chunks under 50Mbps-4G, 5Mbps-4G,
50Mbps-WiFi and 5Mbps-WiFi is roughly equivalent.

C. Lumos as A Plug-in of ABR algorithms
As a throughput predictor of video chunks in adaptive

streaming, Lumos can be integrated into any ABR algorithm
which uses throughput prediction. We use three classic ABR
algorithms as examples to illustrate how Lumos is applied to
existing schemes.
(1) Rate-Based (RB) [3], which selects the highest bitrate be-

low the predicted throughput by harmonic mean (HM) of

655

TABLE I: Variables and their meanings in ABR

Category Variable Meaning

Common

Rk bitrate of the k-th chunk
m the number of bitrates each video slice has

Rk|rj select bitrate rj for the k-th chunk
Tk throughput of the k-th chunk

T̂k|rj prediction value of Tk at bitrate rj
dk(rj) size of the k-th chunk at bitrate rj

L duration of a video chunk

Bk
buffer occupancy when
requesting the k-th chunk

MPC
µ

coefficient of rebuffering time
in QoE of MPC

λ
coefficient of smoothness in QoE
of MPC

n number of chunks to be predicted

BBA Blower
the lower bound of playing buffer,
also named reservoir

throughput samples for past chunks. We integrate Lumos
with RB by replacing the HM predictor with Lumos. As
the bitrate of video chunks (chunk size divided by chunk
duration) encoded with H.264/MPEG-4 fluctuate widely
around the average bitrate [8], RB+Lumos selects the
chunk according to its real bitrate instead of the average
bitrate to make more reasonable decisions, as shown in
Eq. 2. Denotations of variables are listed in Tab. I.

Rk = max
1≤j≤m

{rj , dk(rj)/T̂k|rj ≤ L} (2)

(2) MPC [4], which uses both buffer level and predicted
throughput (by HM predictor, the same as RB) to select
the bitrate which maximizes estimated QoE of a series of
subsequent chunks. We design MPC+Lumos by replacing
the HM predictor in MPC with Lumos to predict the
throughput for each of future chunks, shown in Eq. 36. As
Lumos requires past throughput as features, for the future
chunks except the first one, Lumos takes the predicted
throughput of the prior chunk as input.

Rk = argmax
rj ,1≤j≤m

k+n−1∑
l=k

ˆQoE(Rl|rj) (3)

ˆQoE(Rl|rj) = Rl|rj −max(µ(
dl(Rl|rj)

T̂l|rj
−Bl), 0)

− λ|Rl|rj −Rl−1|, k ≤ l ≤ k + n− 1

(4)

(3) Buffer-Based Approach (BBA) [16], which builds a linear
mapping function between the level of playing buffer and
target bitrate, and sets both lower and upper bounds of
the buffer to select bitrate. When buffer level is below
the lower bound or above the upper bound, BBA selects
lowest bitrate or highest bitrate, respectively. When the
buffer level is between the lower bound and the upper
bound, it selects the bitrate simply according to that
how much current buffer level exceeds the lower bound.
Although BBA makes decisions without prediction, we
argue that accurate prediction assists BBA to achieve

6In Eq. 4, |Rk −Rk−1| is equal to 0 when k = 1.

better QoE. We integrate Lumos with BBA by replacing
linear mapping function with the prediction result of Lu-
mos. BBA+Lumos retains the lower bound and redesigns
the bitrate selection function by predicted delivery time
(chunk size divided by the predicted throughput). For
each bitrate of next chunk, BBA+Lumos sets a threshold
for it, which is the lower bound plus the difference
between predicted delivery time of it and that of the
lowest bitrate. BBA+Lumos selects the bitrate only when
the buffer level exceeds the corresponding threshold, as
illustrated in Eq. 5.

Rk = max
1≤j≤m

{rj , Blower +
dk(rj)

T̂k|rj
− dk(r1)

T̂k|r1
≤ Bk} (5)

V. EVALUATION

We implement the three ABR algorithms above (§IV-C)
with their Lumos-assisted versions, as well as other two
schemes (RobustMPC [4] and Pensieve [17]) in dash.js, and
deploy them on our measurement platform (§III-A). We eval-
uate all the above algorithms in real-world Internet. Extensive
sets of tests with about 300 sessions are carried out to
cover various network environments, including 3 variables:
downstream bandwidth of the server (50 Mbps or 5Mbps),
connection types (WiFi or 4G) and signal strength (strong,
middle and weak) of the mobile client. Sessions are balanced
under different network conditions, as in training Lumos
(§IV-B).

0.20 0.25 0.30 0.35 0.40
Absolute Normalized Prediction Error

0

50

100

M
ea

n
Sq

ua
re

d
Er

ro
r

Lumos

MLR
Harmonic Mean

Robust-HM Better

Fig. 11: Prediction performance of various methods

A. The Prediction Accuracy of Lumos

Firstly, we evaluate the accuracy that Lumos predicts the
throughput of video chunks. We choose three widely used
methods as baseline for comparison: MLR (multiple linear
regression, trained in the same way as Lumos), HM (harmonic
mean of past 5 samples) and Robust-HM (harmonic mean
of past 5 samples with error rate normalization, used in
RobustMPC [4]). We use both prediction error and mean
squared error (MSE) to evaluate the accuracy for predicting
throughput.

Fig. 11 shows the prediction accuracy of various methods.
We can see that in terms of both metrics, Lumos achieves best
performance for throughput prediction. Specifically, Lumos re-
duces two types of error by 16.8%∼38.7% and 49.6%∼72.8%
compared to other methods. It is notable that under strong
network connected with WiFi, Lumos achieves a remarkably
low prediction error with around only 7.4% in average, and

656

improves 57.7%∼74.0% and 78.5%∼90.5% in terms of two
types of error than other methods. Even under weak net-
work, Lumos still improves accuracy by 9.1%∼28.9% and
17.8%∼61.7% over the two metrics. These all demonstrate
that Lumos learns well about the correlation between through-
put and the considered factors.

Compared with HM which is widely used in existing
ABRs, Lumos achieves much better prediction accuracy. The
advantage of Lumos over HM are as follows.
• Awareness of network conditions and player’s state. When

there is no enough past data, e.g., in the start-up phase
of a session, it is hard for predictors to make accurate
prediction [5]. For strong network connected with WiFi
(Fig. 12a as an example), due to lack of past data, HM
obtains 95% prediction error in average for the first 5 chunks
(5 is the number of chunks HM needs for prediction) of
sessions. As for Lumos, by involving network conditions
and player’s state, it reduces the average prediction error to
only 16% for the first 5 chunks in the same situation.

• Consideration of the fluctuation of chunk sizes. HM assumes
that throughput fluctuation is determined by variation of
available bandwidth. However, our analysis and observations
indicate that when the available bandwidth is adequate, the
perceived throughput is strongly affected by the chunk size.
Fig. 12b gives a case in the Steady-State under strong
network, and shows that Lumos clearly knows that how
chunk size fluctuation affect throughput.

• Quick reaction to bandwidth fluctuation. Under weak net-
work, we find that throughput is always unstable with
frequent fluctuation, which makes it almost unpredictable.
In such scenario, Lumos exceeds HM by quick reaction to
fluctuation, as illustrated in Fig. 12c. From the 69th chunk,
throughput suddenly decreased from 6.7Mbps to 3.9Mbps,
and remained declining for the next two chunks. Since HM
is insensitive to outliers [3], it is supposed to lower the
predicted values, but increased them instead for continuous
3 chunks, which may introduce rebuffering. Contrastingly,
Lumos instantly perceives the dynamics of throughput, and
makes more accurate prediction accordingly.

B. The QoE of Lumos-assisted MPC

We now present how accurate throughput prediction con-
tributes to the improvement of QoE for MPC. Based on
throughput prediction, MPC models the evolution of QoE of
future chunks as precisely as possible. In theory, the more
accurately throughput is predicted, the better performance
MPC will achieve [4]. We replace the HM in MPC by Lumos
and have a new ABR algorithm, MPC+Lumos.

QoE metrics. To evaluate the QoE of the three ABR
algorithms, we use the metrics in MPC [4], defined as:

QoE =

N∑
k=1

Rk − µ

N∑
k=1

max((
dk(Rk)

Tk
−Bk), 0)

− λ

N−1∑
k=1

|Rk+1 −Rk| ,

(6)

where N is the number of chunks in the session, Rk is bitrate
that client selects for chunk k, the second item represents the
rebuffering time during delivering chunk k, and the last item
represents smoothness on bitrate switch between chunks. In
the equation, µ and λ are non-negative weighting parameters,
which are respectively set to 4.3 and 1.0, following recent
works [17], [24], [38].

QoE performance. Fig. 13 shows the QoE of MPC,
RobustMPC and MPC+Lumos. Combining the results in
Fig. 13a and 13b, MPC+Lumos always selects higher bitrate
with acceptable rebuffering time than the other two schemes.
Overall, Lumos improves average QoE by 6.3% over MPC
and 8.7% over RobustMPC. We find that although Lumos
provides much more better accuracy than Robust-HM does
(§V-A), rebuffering time of MPC+Lumos is more than that of
RobustMPC. This is because RobustMPC is designed to avoid
rebuffering by predicting lower throughput, which however
sacrifices video bitrate (9% lower than MPC+Lumos) as well
as total QoE. Moreover, compared with MPC, MPC+Lumos
makes more aggressive decisions (3.4% increase in bitrate),
while having 52% reduction in rebuffering time. These results
confirm the benefits of the accurate prediction by Lumos.

C. MPC+Lumos vs. Pensieve

Pensieve [17] is one of state-of-the-art learning-based ABR
algorithms, which utilizes deep reinforcement learning to
learn the policy optimizing the overall QoE. To compare
Lumos-assisted ABR algorithms with Pensieve, we select
MPC+Lumos as it achieves better QoE than others. As the per-
formance of Pensieve relies heavily on the similarity between
the environment where it is trained and that where it is tested,
we use the source code provided by the authors [44] and retrain
Pensieve with our video dataset and network traces (which are
also used to train Lumos) collected in the wild, following [11],
[24]. We convert Pensieve’s model into JavaScript, and deploy
the model in dash.js by TensorFlow.js [45].

Fig. 13 shows the QoE metrics of MPC+Lumos and Pen-
sieve. Compared with Pensieve, MPC+Lumos achieves re-
markable improvement in QoE, which outperforms Pensieve
on 93% of all the sessions, with an increase on QoE of 19.2%
in average. As for underlying QoE metrics, MPC+Lumos
improves the average bitrate by 8.9%, and reduces the average
rebuffering time and smoothness by 44.2% and 66.1% respec-
tively. The reasons that MPC+Lumos outperforms Pensieve in
real-world network are summarized as follows.
• Limited ability of generalization. Throughput of chunks

varies greatly in real world, with the maximum and min-
imum values differing by 5 orders of magnitude in our
dataset (§IV-B). It poses a huge challenge for Pensieve
model to predict accurately. Although we have already
retrained Pensieve, Pensieve still appears to be not powerful
enough to specialize to all scenarios as reported in [24].

• Difference between simulator and real world. The simu-
lator used to train Pensieve model is designed with the
precondition of disabling slow-start restart [17]. While in
the real world, most Linux servers enable slow-start restart

657

0
20
40
60
80

100

0 1 2 3 4 5 6 7 8 9 10Th
ro

ou
gh

pu
t (

M
bp

s)

Chunk Index

Real Throughput Lumos Prediction HM Prediction

(a) Lumos performs well in start-up phase

0
200
400
600
800
1000

0
10
20
30
40
50
60

70 71 72 73 74 75 76 77 78 79 80

Ch
un

k
 S

iz
e

(K
B)

Th
ro

ug
hp

ut
 (M

bp
s)

Chunk Index

Real Thput Lumos Pre HM Pre Chunk Size

(b) Lumos takes chunk size into consideration

0

2

4

6

8

65 66 67 68 69 70 71 72 73 74 75Th
ro

ug
hp

ut
 (M

bp
s)

Chunk Index

Real Thoughput Lumos Prediction HM Prediction

(c) Lumos reacts quickly to fluctuation

Fig. 12: Cases of Lumos outperforming HM in throughput prediction

2 4
Average Bitrate (Mbps)

0

0.2

0.4

0.6

0.8

1

CD
F

 Better

MPC+Lumos
RobustMPC
MPC
Pensieve

(a)

0.0 0.2
Average Rebuffering Time (s)

0

0.2

0.4

0.6

0.8

1

CD
F

 Better

MPC+Lumos
RobustMPC
MPC
Pensieve

(b)

0.5 1.0
Average Smoothness

0

0.2

0.4

0.6

0.8

1

CD
F

 Better

MPC+Lumos
RobustMPC
MPC
Pensieve

(c)

2 4
Average QoE

0

0.2

0.4

0.6

0.8

1

CD
F

 Better

MPC+Lumos
RobustMPC
MPC
Pensieve

(d)

Fig. 13: QoE Performance of MPC+Lumos vs. MPC, RobustMPC and Pensieve

0.0000.0250.050
Rebuffering Time (s)

3.8

3.9

4.0

4.1

Bi
tra

te
 (M

bp
s) BBA+Lumos

BBA
RB+Lumos

RB
 Bett

er

Fig. 14: QoE Improvement of
RB+Lumos and BBA+Lumos

by default, which Pensieve is blind to. Moreover, Pensieve’s
simulator works with constant network traces, in which the
bitrate selection has no impact on the throughput of next
chunk, which is far from the real-world cases according to
our observations in §III.

D. Lumos with Other ABR algorithms

Finally, we evaluate the QoE performance of RB+Lumos
and BBA+Lumos, both of which are run in real-world network.
As RB and BBA are not designed to consider smoothness,
we only focus on the average bitrate and rebuffering time
of RB+Lumos and BBA+Lumos. The results of the four
considered schemes are given in Fig. 14. It turns out that with
Lumos assisted, both RB and BBA can obtain better QoE.

With accurate prediction by Lumos, RB+Lumos improves
bitrate by 3.3% and reduces rebuffering time by 86.3%, com-
pared with RB. Besides, although BBA is quite effective in the
real world [11], BBA+Lumos still outperforms BBA on both
bitrate (1.4% increase) and rebuffering time (37.5% reduction),
demonstrating the advantages brought by integrating accurate
prediction of throughput in ABR algorithms.

VI. RELATED WORK

There is a large amount of existing works on ABR algo-
rithms for video steaming [3], [4], [6]–[9], [11], [16]–[18],
[24], [38], [46]. Most of them rely on predicting throughput or
delivery time explicitly or implicitly, while only a few studies
focus on this issue [5], [10]–[13].

Among them, [12] and [13] indicate that it is difficult to
predict throughput as background traffic exists, but they do
not investigate how to achieve better prediction. Both CS2P [5]
and MPC-CDN [10] propose predictors based on observations
in real world. However, they only focus on factors about
connection status, and believe that throughput fluctuation is all

brought by change of network conditions. Fugu [11] is the first
work to consider chunk size in predicting delivery time, which
also utilizes statistic information of the transport layer as the
indicator of network conditions. Nevertheless, chunk size only
represents the amount of delivered data of the application, how
the application behaves during delivery also matters.

Different from the above, our work considers both appli-
cation behavior and network conditions in prediction, brings
insight that predicting throughput is better than predicting
delivery time in terms of prediction error, and proposes a
throughput predictor which could be integrated into ABR
algorithms and performs well in the wild Internet.

VII. CONCLUSION

In this work, we built a real-world measurement platform
for video streaming and collected dataset containing 2500+
sessions in the wild Internet. We conceptually distinguished
application throughput and available bandwidth, identified the
important factors that affect perceived throughput, and found
that throughput is a better prediction target than delivery
time for ABR algorithms. Further, we developed a throughput
predictor for ABR algorithms named Lumos, which assists
existing ABR algorithms to achieve better QoE, by offering
accurate predictions.

ACKNOWLEDGMENT

This work was partially supported by National Key R&D
Program of China (No. 2019YFB1802800), National Natural
Science Foundation of China (No.61725206, 62072437) and
Beijing Natural Science Foundation (No. JQ20024). Corre-
sponding Author: Gaogang Xie.

658

REFERENCES

[1] DASH, “Dash industry forum — catalyzing the adoption of mpeg-dash,”
https://dashif.org/, 2021.

[2] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White Paper, vol. 1, p. 1, 2018.

[3] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, 2012, pp. 97–108.

[4] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 325–338.

[5] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 272–285.

[6] Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang,
and C. Yue, “A control theoretic approach to abr video streaming: A
fresh look at pid-based rate adaptation,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 2017, pp. 1–9.

[7] K. Spiteri, R. Sitaraman, and D. Sparacio, “From theory to practice: im-
proving bitrate adaptation in the dash reference player,” in Proceedings
of the 9th ACM Multimedia Systems Conference, 2018, pp. 123–137.

[8] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue,
“Abr streaming of vbr-encoded videos: characterization, challenges, and
solutions,” in Proceedings of the 14th International Conference on
emerging Networking EXperiments and Technologies, 2018, pp. 366–
378.

[9] H. Mao, S. Chen, D. Dimmery, S. Singh, D. Blaisdell, Y. Tian, M. Al-
izadeh, and E. Bakshy, “Real-world video adaptation with reinforcement
learning,” in ICML 2019 Workshop RL4RealLife, 2019.

[10] E. Ghabashneh and S. Rao, “Exploring the interplay between cdn
caching and video streaming performance,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp. 516–
525.

[11] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 20), 2020, pp. 495–511.

[12] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What
happens when http adaptive streaming players compete for bandwidth?”
in Proceedings of the 22nd international workshop on Network and
Operating System Support for Digital Audio and Video, 2012, pp. 9–14.

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in Proceedings of the 2012 internet measurement conference, 2012, pp.
225–238.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[15] B. Wang and F. Ren, “Towards forward-looking online bitrate adaptation
for dash,” in Proceedings of the 25th ACM international conference on
Multimedia, 2017, pp. 1122–1129.

[16] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 187–198.

[17] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 197–210.

[18] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” in IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

[19] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim,
E. Katz-Bassett, and R. Govindan, “An internet-wide analysis of traffic
policing,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 468–482.

[20] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li et al., “Lumos5g: Mapping and
predicting commercial mmwave 5g throughput,” in Proceedings of the
ACM Internet Measurement Conference, 2020, pp. 176–193.

[21] M. Allman, V. Paxson, and W. Stevens, “Tcp congestion control,” RFC,
vol. 2581, pp. 1–14, 1999.

[22] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin,
J. Rexford, and R. K. Sinha, “Can accurate predictions improve video
streaming in cellular networks?” in Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications, 2015, pp.
57–62.

[23] M. Licciardello, M. Grüner, and A. Singla, “Understanding video
streaming algorithms in the wild,” in International Conference on
Passive and Active Network Measurement. Springer, 2020, pp. 298–
313.

[24] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: auto-tuning video abr algo-
rithms to network conditions,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
44–58.

[25] “Xiph.org: Derf’s test media collection,” https://media.xiph.org/video/
derf, 2021.

[26] FFmpeg, https://www.ffmpeg.org/, 2021.
[27] J. Le Feuvre, C. Concolato, and J.-C. Moissinac, “Gpac: open source

multimedia framework,” in Proceedings of the 15th ACM international
conference on Multimedia, 2007, pp. 1009–1012.

[28] Selenium, https://www.selenium.dev/, 2021.
[29] Nginx, http://nginx.org/, 2021.
[30] MDN, “Network information api - web apis,” https://developer.mozilla.

org/en-US/docs/Web/API/Network Information API, 2021.
[31] J. Sheng-Jhih, “pywifi,” https://pypi.org/project/pywifi/, 2021.
[32] JerseyHo, “Cellular-z,” https://play.google.com/store/apps/details?id=

make.more.r2d2.cellular z, 2021.
[33] Android, https://developer.android.com/reference/android/net/wifi/

WifiInfo#getRssi(), 2021.
[34] ——, https://developer.android.com/reference/android/telephony/

CellSignalStrengthLte#getRsrp(), 2021.
[35] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual

information.” Physical review. E, Statistical, nonlinear, and soft matter
physics, vol. 69 6 Pt 2, p. 066138, 2004.

[36] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLoS ONE, vol. 9, 2014.

[37] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C.
Sabeti, “Detecting novel associations in large data sets,” science, vol.
334, no. 6062, pp. 1518–1524, 2011.

[38] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick:
A harmonious fusion of buffer-based and learning-based approach for
adaptive streaming,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 1967–1976.

[39] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication, 2020.

[40] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “Pitree: Practical
implementation of abr algorithms using decision trees,” Proceedings of
the 27th ACM International Conference on Multimedia, 2019.

[41] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated look at 5g in the
wild: performance, power, and qoe implications,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021, pp. 610–625.

[42] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] Pensieve, https://github.com/hongzimao/pensieve, 2021.
[45] TensorFlow.js, https://tensorflow.google.org/js/, 2021.
[46] T. Zhang, F. Ren, W. Cheng, X. Luo, R. Shu, and X. Liu, “Modeling

and analyzing the influence of chunk size variation on bitrate adaptation
in dash,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

659

