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Low-latency cloud rendering enables mobile users to experience high-quality, real-time 3D graphics but achieving low
motion-to-photon (MTP) latency while maintaining smooth playback is a significant challenge. Our real-world measurement
study identifies receive-to-composition (R2C) latency, caused by ineffective jitter buffer management, as the primary factor
contributing to increased MTP latency. To address this, we introduce JitBright, a client-side optimization strategy that
dynamically reduces MTP latency through adaptive jitter buffer management. By adjusting buffer levels based on smoothing
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playback probability and implementing proactive keyframe requests to mitigate frame dependency, JitBright minimizes both
active and passive waiting times.

Our large-scale evaluation, conducted over 591,000 sessions across diverse network conditions (WiFi, 4G, 5G) and device
types, demonstrates significant improvements in user experience. JitBright reduces median R2C latency by up to 87.5%,
increases the proportion of sessions meeting strict MTP latency requirements by 6%-27%, and decreases the video freeze rate
from 2.4%-2.8% to 0.4%-1.0%.

CCS Concepts: • Networks→ Network performance evaluation; Application layer protocols.

Additional Key Words and Phrases: Mobile Cloud Rendering, Low Latency, Motion-to-photon Latency, Jitter Buffer

1 INTRODUCTION
Mobile cloud rendering is revolutionizing e-commerce by enabling real-time 3D graphics on resource-constrained
mobile devices [39]. The ability to access high-quality, immersive visuals is reshaping how consumers interact
with products online, enhancing engagement and driving business growth [3, 4, 35].

Cloud rendering transfers the processing burden from mobile devices to powerful servers, allowing even
low-end devices to render complex scenes. This process introduces motion-to-photon (MTP) latency, which is
the delay between user input (or motion) and the resulting image update (or photon) on a display [5]. The MTP
latency must stay below 100 ms [21] or 150 ms [10] to maintain a seamless user experience. As shown in Figure 1,
MTP latency is categorized into three components: (i) Rendering Engine (RE) latency, the time to render and
encode a frame on the server; (ii) Network Transmission (NT) latency, the total time for uploading commands
and downloading video frames; and (iii) Receive-To-Composition (R2C) latency, the duration from receiving the
frame’s last packet to its display.
Through large-scale online measurements from a leading e-commerce app in China (Section 4), we have

identified R2C delay as the primary contributor to MTP latency. R2C delay arises from three processes: buffering,
decoding, and rendering. Our in-depth analysis reveals that buffering latency accounts for the largest portion in
the majority (71.5%) of cases, and this prolonged R2C latency persists across all grades of devices and network
types. We further categorize the causes of buffering latency into two types: active waiting and passive waiting
within the frame buffer (i.e., jitter buffer). Active waiting occurs when a frame is ready for decoding but is held to
ensure smooth playback, while passive waiting happens when a frame must wait for the arrival of a reference
frame required for decoding.

In this paper, we introduce JitBright, a systematic jitter buffer optimization strategy aimed at reducing Motion-
to-Photon (MTP) latency by minimizing both active and passive waiting latencies across diverse network types
and device grades. To achieve this goal, JitBright needs to address the following unique design challenges:

(i) Avoiding active waiting must balance the conflicting goals of low latency and smooth playout. The default
strategy employed by WebRTC [31] clients is extremely conservative, resulting in unnecessary increases in
active wait latency. Conversely, several studies pursue extremely low latency by minimizing the buffer level to
zero [19, 24]. However, our evaluations in Section 6.2 indicate that this zero-buffering approach significantly
degrades playout smoothness. To this end, JitBright introduces an adaptive gain to control the buffer level based
on the probability that a frame will not play smoothly, thereby avoiding active waiting without compromising
smoothness (Section 5.1).

(ii) Different devices and network types exhibit varying network and R2C latencies. As observed in Section 4.5,
differences in device performance and network types affect the frame arrival process. Therefore, balancing latency
and smoothness requires considering the variations in network types and device grades (Section 5.2).

(iii) Avoiding passive waiting by requesting a keyframe is promising, but at the expense of latency and smoothness.
Passive waiting is caused by the decoding dependency between frames. An intuitive idea is to remove this
dependency by proactively requesting a keyframe that can be decoded independently. However, this method may
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Fig. 1. Real-time cloud rendering architecture and latency decomposition.

introduce additional latency or trigger stalling due to the long transmission time of keyframes. As a solution,
JitBright incorporates two cost functions to measure the cost of passive waiting or proactive requesting, and
determines the action following the minimum cost (Section 5.3).

JitBright is designed to be lightweight and practical, making it easy to deploy. We have implemented JitBright
in our real-world cloud rendering system (Section 5.5). Large-scale online A/B tests, conducted over more than
591,000 sessions, demonstrate that JitBright effectively reduces MTP latency while improving playout smoothness
(Section 6). Specifically, JitBright reduces median R2C latency by 82.4%, 86.5%, and 87.5% for WiFi, 4G, and 5G,
respectively. It also increases the proportion of sessions meeting the MTP latency requirement (i.e., less than
150 ms) by 15%–23%, 9%–20%, and 6%–27% on WiFi, 5G, and 4G networks, respectively. Furthermore, JitBright
reduces the video freeze rate from 2.4%–2.8% to 0.4%–1.0%.

2 BACKGROUND
Cloud rendering system overview. Figure 2 depicts the architecture of our interactive cloud rendering system,
which supports a cloud rendering service on a top e-commerce APP in China. The system incorporates a server
and a mobile client. The server maintains the actual 3D models and renders them in real-time according to the
user’s motions (e.g., moving, changing viewpoints). Meanwhile, the server generates a video stream of the models
and transmits it to the mobile client. In this way, the client can interact with lifelike 3D environments without
suffering from the high computing costs [18]. Consequently, the user experience is impacted by MTP latency [36].

Data Center

Rendering Server

Rendering Process

WebRTC Signal
Server

WebRTC media stream

Edit

Register Register

Motion message
Datachannel

Build

Fig. 2. Online cloud rendering system overview.
Cloud rendering communication workflow.The cloud rendering service operates on multiple rendering

servers in 4 geographically distributed data centers in China. A separate WebRTC signal server is used to set
up WebRTC connections with the client. Users access the cloud rendering service through a virtual shopping
brand pavilion in the application on mobile clients. A session starts with a user entering the virtual pavilion in
the APP. The mobile client first connects with the rendering server in the nearest data center. Then, it continually
sends real-time user commands (e.g., motions like changing viewpoints) to the server through the WebRTC
Datachannel utilizing SCTP [1], and receives real-time video streaming from the server by WebRTC.
Rendering engine. The cloud rendering service is built using Unreal Engine [14], a state-of-the-art 3D

rendering engine famous for creating immersive 3D visualized environments. Each rendering service process

ACM Trans. Multimedia Comput. Commun. Appl.

 



4 • Y. Zhao et al.

creates a series of real-time images of 3D models, which are captured into a live video stream using Pixel
Streaming [16]. Pixel Streaming is a plugin within the Unreal Engine it contains a WebRTC module to encode
and transport the images.
Video streaming with WebRTC. The rendered image stream is encoded and transmitted with the We-

bRTC [31]. We chooseWebRTC because it already serves as a standard interactive video streaming framework [20]
and is widely supported by major web browsers and platforms [42], thus facilitating large-scale deployments.
Video encoding. In the encoding process of video streaming, two types of frames exist: keyframe (I-frame)

and delta frame (P-frame). While each keyframe can be decoded as an independent image, each delta frame must
be decoded based on its reference frame, which is a previous keyframe or delta frame. A keyframe is generally
4-10 times larger than a delta frame [37] because it contains the full image data required for independent decoding.
In contrast, delta frames only store the differences between consecutive frames.

3 JITBRIGHT OVERVIEW
We introduce JitBright, a client-side jitter buffer optimization algorithm designed to reduce Motion-to-Photon
(MTP) latency in mobile cloud rendering applications. Figure 3 shows JitBright’s components. JitBright comprises
three key components: latency diagnostic, jitter delay manager, and keyframe requester, which together monitor
and control the jitter buffer strategy on the client side in real-time.

Latency diagnostic (Section 4). Latency diagnostic identifies the bottlenecks in MTP latency. By a data-driven
analysis of MTP latency analysis, we pinpoint the major contributors to MTP latency, such as active and passive
waiting times in the jitter buffer. These latencies primarily stem from inefficient buffer scheduling and frame
dependencies during the decoding process. It also adjusts the control parameters of the jitter delay manager
based on network type and device grade, ensuring optimal performance across various conditions.
Jitter delay manager. The jitter delay manager dynamically adjusts the buffer level using an adaptive gain

mechanism (Section 5.1). This ensures that the buffer level is optimally managed based on the likelihood of
smooth playback, balancing low latency and playback smoothness. The adaptive gain’s smooth parameter is
adjusted according to the device and network type provided by the latency diagnostic (Section 5.2).

Keyframe requester (Section 5.3). The keyframe requester proactively reduces passive waiting by requesting
keyframes at critical times, mitigating latency due to frame dependencies.

RendererDecoderFrame bufferPacket
Buffer

Client

Latency
diagnostic

Jitter delay
manager

Keyframe
requester

Adaptive gainJitBright

Packet
Sender

Control flow
Data flow

Network type

Device type

Fig. 3. An overview of JitBright

4 MTP LATENCY DIAGNOSTICS
In this section, we introduce how JitBright diagnoses the MTP latency. For this purpose, we address four issues:
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(i) How large is MTP latency in mobile cloud rendering? We use measurements to quantify in Section 4.2.
Our detailed measurement identified that R2C latency is the main factor that inflates MTP latency. And this
phenomenon is ubiquitous across all device types and network types.

(ii) What are the primary factors that inflate R2C latency? We break down R2C latency into three elements:
buffering, decoding, and rendering latency, and find the root cause is the active waiting and passive waiting in
the buffering process.

(iii) Why are the active and passive waiting times so prolonged? We identified that an inefficient jitter buffer
scheduling strategy is primarily to blame.

(iv) How do network type and device type affect MTP latency? We found that different device types and network
types exhibit varying tail network latency and decoding latency. This suggests that different scenarios necessitate
distinct jitter buffer management configurations.

4.1 Measurement Setup
Methodology. The cloud rendering system periodically (i.e., every 30 seconds) performs end-to-end online
measurements to record the latency of each component. Recalling Figure 1, in each measurement, the client first
sends a measurement message to the server. Once the server receives the message (the first part of NT Latency), it
will provide feedback to the client regarding the rendering and encoding time of the latest frame, corresponding
to RE Latency. After that, the server transmits the video frame to the client (the second part of NT Latency). The
client stores the received frame in its frame buffer, and then decodes and renders it at a specific time, which
composes R2C Latency. The client calculates latencies of each component using feedback from the server.

The latency of each component is obtained by modifying related callback functions on both sides. Additionally,
the user’s device type and network access type are also collected. Once the client record is generated, it is
immediately sent to the server for analysis. Although each measurement involves multiple frames, only the first
one’s MTP latency is recorded. This is because generating, storing, and transmitting the record of each frame is
costly in the online system.
Dataset. The data collection spanned 18 days, from July 2 to 19, 2023. It encompassed 36 million frames,

accumulated a total video time of 166 hours, and involved the participation of over 2,000 users. Note that only
performance-related information was collected during the anonymous user’s access, which does not raise any
ethical issues.

4.2 Analyzing MTP Latency in Mobile Cloud Rendering
We conduct a detailed analysis of MTP latency in mobile cloud rendering, focusing on its key components and
how they vary across different device categories.

We first investigate the latency distribution of the three components that compose MTP latency, i.e., RE latency,
NT latency, and R2C latency. The results in Figure 4 indicate that: (i) RE latency is relatively stable, with an
average value of 30 ms per frame. (ii) NT latency exhibits a long-tailed distribution, as reported in previous
studies [22, 23, 46]. (iii) R2C latency accounts for the highest proportion of MTP latency in most (57.2%)
cases. These results imply that MTP latency is primarily affected by R2C latency.
To confirm this conclusion, we further investigate the relationship between R2C latency and MTP latency.

We calculate the conditional probability distribution between R2C latency and MTP latency, namely % ()'2� >

C~ |)")% > CG ). Here, )'2� and )")% denote R2C and MTP latency, respectively. CG and C~ are latency values,
corresponding to the horizontal and vertical coordinates in Figure 5, respectively. The results show that when
MTP latency exceeds the latency requirements (i.e., over 150 ms), over 50% of cases experience R2C latency over
100 ms (i.e., 2/3 of 150 ms).
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Fig. 4. CDF of MTP latency and its three components.
Fig. 5. The conditional probability of R2C latency and MTP
latency.

We further analyze the issue and find that it exists across all device grades. The devices were categorized into
high, medium, and low grades based on their CPU performance and benchmark scores [17]. The distribution of
device grades is shown in Table 1. We recorded MTP latency, network latency, and R2C latency for high-end,
medium-end, and low-end devices, respectively. RE latency is omitted, as we observed it to be stable. Figure 6
presents their distributions, where it can be observed that for high-end devices, the R2C latency is as substantial as
the network latency, with both showing nearly identical distributions. Furthermore, for medium-end and low-end
devices, R2C latency constitutes the largest portion of MTP latency, this leads to the following observation:
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Fig. 6. CDF of MTP latency and its components. Prolonged R2C latency is present across all device grades.

Observation: UnsatisfactoryMTP latency is dominated by inflatedR2C latency, and this phenomenon
is ubiquitous across all types of devices.

4.3 Key Factors Inflating R2C Latency
We then explore the underlying factors contributing to the inflation of R2C latency, breaking down the processes
and mechanisms that lead to this bottleneck in mobile cloud rendering.

As we have identified R2C latency is the bottleneck in optimizing M2P latency, the next question is: What are
the primary factors that inflate R2C latency?
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Decomposing R2C latency. R2C latency corresponds to the duration from the client receiving a video frame
to the user seeing this frame played. Recalling Figure 1, the client establishes a frame buffer, known as the
jitter buffer, to store each received frame in timestamp order. The decoder fetches the earliest frame from the
jitter buffer, decodes it, and finally passes it to the renderer for display. Hence, R2C latency is produced in three
processes: (i) Buffering, (ii) Decoding, and (iii) Rendering. Figure 7 shows the latency distribution of each process.
Note that rendering latency is omitted because it is always less than 10ms [8]. The results show that buffering
latency is the key factor impacting R2C latency in most (71.5%) cases.

Passive waiting

Active waiting
Jitter Buffer

#1

RendererDecoder
#2#3#4

#5#6#7#8

User

Fig. 8. Active and passive waiting in the jitter buffer.

Understanding buffering latency. Buffering latency indicates that a frame is waiting in the jitter buffer
rather than being decoded. It is caused by two cases: active waiting and passive waiting, as illustrated in Figure 8.
Active waiting occurs when frames are queued in the jitter buffer, awaiting their scheduled decoding(such as
frames #3 and #4). On the other hand, passive waiting occurs when frames arrive out of order, and later frames
(frame #8) cannot be decoded because their previous reference frames (frame #7) have not yet arrived. This
phenomenon can be viewed as head-of-line blocking of frames [11], and is usually caused by packet loss in the
transmission [33]. Recall that the delta frame (P-frame) must be decoded based on its reference frame, which is a
previous keyframe or delta frame.

Therefore, the root cause of the inflated R2C latency is:
Root cause: Active and passive waiting in the client jitter buffer primarily inflates R2C latency.

4.4 Ineffective Jitter Buffer Scheduling Strategy
To analyze active and passive waiting behavior on the client side, we perform controlled experiments on our local
testbed (Section 5.5), for the ease of accessing fine-grained latency information. The results (stationary, connected
with WiFi) indicate that the latency brought out by active waiting accounts for 72.8% of R2C latency. In this
case, multiple successive video frames are queued in the jitter buffer, waiting to be decoded. In other words, R2C
latency is primarily caused by the ineffective jitter buffer scheduling strategy [13]. Jitter buffer aims to enable the
smooth playout of video frames. Specifically, when the bandwidth suddenly drops or a frame is too large, causing
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Fig. 9. The impact of maximum frame size and its frequency on the estimated value of jitter delay.

the transmission time to exceed the inter-frame interval (e.g., 16.7ms at 60 fps frame rate), the frames in the jitter
buffer can be played to avoid stalling or stutter.
Default strategy. The default scheduling strategy of the jitter buffer in the WebRTC-based cloud rending

system follows an intuitive idea: the buffer level (denoted as �) should be higher when the frame size (denoted as
!) is fluctuating or the link bandwidth (denoted as �) is insufficient, leading to the following:

� ∝
!<0G − !0E6

�̂
, (1)

where ∝ indicates “proportional to”. !<0G and !0E6 are the smoothed maximum and average frame sizes (details
in [52]), respectively. �̂ is the estimated bandwidth, using Kalman Filter [6]. It is worth noting that !<0G is not a
fixed constant: WebRTC updates it for every decoded frame. Let !(C8 ) be the current frame size and k ∈ (0, 1)
the reduction factor (default k = 0.9999 [2]). If !(C8 ) > k · !<0G the buffer treats the frame as “large” and sets
!<0G ← !(C8 ). Otherwise, !<0G decays exponentially as !<0G ← k · !<0G . Figure 9 illustrates this behavior,
showing !<0G rising sharply on a keyframe and then decreasing slowly as only delta frames follow. This scheme
provides a moving upper bound for Equation (1).
Performance issue. In video streaming, the frame size is determined by both the frame type (keyframe

or delta frame) and the content complexity [32] when the target encoding bitrate is constant. In particular, a
keyframe is generally 4-10 times larger than a delta frame [37], dominating the variation in frame size. Therefore,
!<0G in Equation 1 always indicates the size of a keyframe. The default strategy tends to maintain a larger
number of frames in the jitter buffer to avoid the smoothness affected by keyframes. However, keyframes appear
infrequently in the cloud rendering system, with typically one keyframe every 300 frames, following the common
practice [15, 19]. Under this circumstance, the default strategy is too conservative, resulting in unnecessary active
waiting and ultimately inflated R2C latency.

Figure 9 gives an example from experiments in our controlled testbed. The client stays stationary and connects
with the server through an Ethernet cable. The frame rate is set to 60 fps. It can be observed that the buffering
latency suddenly increases from 12 ms to 57 ms (4.8x) after the first keyframe appears, and remains at a high
level (over 52 ms) thereafter. R2C latency exhibits a similar behavior, with an increase from 25 ms to 80 ms (3.2x).
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4.5 Understanding the Impact of Network Type and Device Type on MTP latency
Our further research revealed that both network access type and device type affect the network latency and R2C
latency. Therefore, the Latency Diagnostics module adjusts JitBright control parameters based on the current
device and network types to address the characteristics of different scenarios.

Network type. The network latency differs across various network types, with 4G having the highest median
latency (69 ms), followed by 5G (49 ms), and WiFi with the lowest (36 ms), as shown in Figure 10a, which aligns
with existing studies [27, 44]. Such latency variation affects the frame arrival process [38, 47] and consequently
impacts the R2C latency, as illustrated in Figure 10b. Specifically, the median R2C latency for WiFi (57ms) and 5G
(52ms) are relatively close, whereas 4G exhibits a higher median of 71 ms. Additionally, the 4G’s P90 tail latency
is 200 ms, which is 13% higher than WiFi and 23% higher than 5G.

Interestingly, the median R2C latency for WiFi is not lower than that of 5G despite its lower NT, a seemingly
counter-intuitive result that two factors can explain. First, users on 5G typically operate newer devices equipped
with hardware decoders capable of faster frame decoding: Figure 11a shows that 90.6% of 5G frames finish
decoding within 100ms, whereas the ratio for WiFi is 81.1%. Moreover, WiFi users constitute a larger proportion of
the user base and include more mid to low-end devices (see Table 1), resulting in worse tail decoding performance.

Second, WiFi links exhibit higher short-range jitter. Specifically, for sessions where NT < 100ms, we separately
analyze the 0–50 ms and 50–100 ms ranges, since approximately 65% of net latency samples are below 50 ms,
and nearly 90% are below 100 ms, reflecting typical RTT values observed under normal network conditions. In
both ranges, the standard deviation of NT is larger for WiFi than for 5G (Figure 11b), consistent with findings
from previous studies [44]. Consequently, WebRTC must maintain deeper jitter buffers to handle these bursty
variations, offsetting WiFi’s median NT advantage and resulting in slightly higher overall R2C latency.

Finally, as confirmed by the nearly identical downlink bitrate distributions for WiFi and 5G sessions (fig. 11c),
we rule out the potential confounding effect of larger keyframes in WiFi scenarios. These findings lead to the
following implication:
Implication 2: Different jitter buffer management strategies are required due to variations in the frame arrival

process under different network types.
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(a) Network latency under different network types
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(b) R2C latency under different network types

Fig. 10. Network latency and R2C latency under different network access types.

Decive type. We recorded the network latency for different device types. The distribution of network types is
as shown in Table 1. Users access this application via wireless networks, mainly WiFi, which accounts for 77.2%
of all samples. As shown in Table 2, the P50 network latency differs by only 10 ms between high-end and low-end
devices. By contrast, the gap widens sharply in the tail: at the 99th percentile, the latency of mid-end devices is
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Fig. 11. Comparison of device-side decoding latency, short-range network jitter, and downlink bitrate for 4G, WiFi, and 5G
sessions.

Table 1. Proportion of device grades and network type.

Device Grade
Network Type High(37.8%) Mid(40.0%) Low(19.7%)
WiFi(77.2%) 26.9% 32.5% 17.8%

4G(10.7%) 4.7% 4.1% 1.9%

5G(9.6%) 6.2% 3.4% 0.02%

Table 2. Network latency at different percentiles for three device type

P10 P50 P99
high-end 22.8 ms 36.0 ms 1813.8 ms
mid-end 24.8 ms 40.0 ms 2691.2 ms
low-end 26.8 ms 46.0 ms 3150.0 ms

1.48 times that of high-end devices, and low-end devices reach 1.7 times. For clarity, our network latency (NT)
metric includes both RTT and frame transmission time. At the 99th percentile, NT significantly exceeds RTT
(348ms) because the frame transmission time contributes a larger proportion compared to RTT, primarily due to
many large keyframes at the tail (e.g., 1813.8ms for high-end devices in Table 2). In conclusion, the impact of
device grade on network latency reveals that under non-tail conditions, network latency for high-end, mid-end,
and low-end devices remains similar. However, under tail conditions, the differences in network latency across
device grades become significantly more pronounced. This leads to the following implication:

Implication 1: A more conservative jitter buffer management strategy is required to accommodate the worse tail
latency conditions in lower-end devices.
In summary, our large-scale measurements of the online cloud rendering system reveal that optimizing

MTP latency is bottlenecked by R2C latency. However, R2C latency is significantly affected by the jitter buffer
scheduling strategy on the client side. This motivates us to explore an effective strategy that performs well in the
wild mobile Internet, accommodating diverse network types and device types.
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Fig. 12. A case of an oversized frame can not be transmitted within an extra frame interval.

5 DEFLATING MTP LATENCY BY JITBRIGHT
Minimizing MTP latency is essential for delivering a seamless user experience in cloud rendering. As discussed
in Section 4, the key to reducing MTP latency lies in optimizing the jitter buffer scheduling strategy. The ideal
approach must balance two conflicting objectives: (i) reducing latency, to prevent MTP latency from exceeding
acceptable limits (e.g., over 150 ms); and (ii) ensuring smooth playback, to avoid inconsistent frame rates or stalling.
To address this challenge, we propose JitBright, a systematic jitter buffer optimization strategy that deflates

MTP latency while ensuring smooth playout. Specifically, JitBright introduces a jitter delay manager and a
proactive keyframe requester. The jitter delay manager sets an adaptive gain to control the jitter buffer level
based on the probability that a frame will not play smoothly, thereby avoiding unnecessary active waiting. The
keyframe requester proactively sends keyframe request to remove the decoding dependency between frames,
thus reducing passive waiting latency.

5.1 Jitter Delay Manager with Adaptive Gain
To balance the requirements of low latency during active waiting and ensure smooth playout, JitBright introduces
a jitter delay manager that adaptively adjusts a gain parameter applied to the default strategy. Specifically, it
transforms Equation 1 as follows:

� = 608= ∗
(!<0G − !0E6)

�̂
. (2)

Design principle. In principle, the 608= should be proportional to the probability of a frame not satisfying the
smoothness requirement. That occurs when a frame exceeds the average size !0E6, and the extra part cannot be
transmitted within a single frame interval (denoted as � ) as shown in Figure 12. Consequently, this frame will
arrive later than expected, resulting in uneven playout speed or a stall. The principle of setting 608= is formulated
as:

608= ∝ % (! − � (!) ≥ (), (3)
where ! represents the random variable of frame size, and � (!) means expected frame size, corresponding to
!0E6. % (·) indicates the probability. ( is the amount of data that can be transmitted within the frame interval � .
Note that � is constant and directly derived from the encoding frame rate. In our setting (Section 6), � is 16.7ms
for 60 fps video streaming. To further control the preferences for latency or smoothness, we introduce a control
parameter B? (smooth parameter) in ( , as presented in Equation 4. B? is set according to network and device
types as discussed in Section 5.2.

( = B? × � × �̂ . (4)
Based on Chebyshev’s inequality [26], the upper bound on the probability of violating the smoothness requirement
is illustrated by Equation 5.

% (! − � (!) ≥ () < % ( |! − � (!) | ≥ () ≤ +0A (!)/(2. (5)
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To this end, we define the 608= considering the upper-bound probability of a smoothness violation event, as in
Equation 6.

608= =+0A (!)/(2. (6)

The gain in Equation (6) scales the jitter delay estimated by WebRTC’s built-in jitter estimator [13], which already
captures short-term network-delay variance. Thus, the gain corrects only the remaining dominant factor, namely
the frame-size variability identified in Section 4.3. Online measurements support this distinction: 99.8% of packets
affected by network jitter experience less than one frame interval (16 ms) of additional delay, indicating that the
impact of network-induced jitter is negligible relative to the effect of frame-size variation.
Control logic. Smoothness is ensured when successive video frames arrive at the client at a uniform speed.

This occurs when the variation in frame size (i.e., +0A (!)) is small or when the bandwidth is sufficient (i.e., ( is
large). In this case, the 608= is set to a small value, leading to a low buffer level as well as low latency. Otherwise,
the 608= will increase adaptively to reserve more frames in the jitter buffer, achieving smooth playout. Due
to the relatively wide upper bound of the Chebyshev inequality, this algorithm initially favors smoothness. In
latency-sensitive scenarios, the smoothness parameter B? can be adjusted to meet the requirements, as described
in Section 6.

There is a special case for this algorithm: when the client requests a keyframe (see Section 5.3), the 608= is set
to 1 and maintained until the keyframe is received. This is because a large frame is expected to arrive, and the
client jitter buffer should be prepared for that.

5.2 Adaptive Management of Device and Network Diversity
Different network and device types influence both network latency and R2C latency, leading to variations in
frame arrival processes, as discussed in Section 4.5. Consequently, the jitter delay manager should consider the
specific characteristics of network types and device types. Specifically, we control the smoothness parameter of
adaptive gain based on different network and device conditions. Formally, this is expressed as:

B?∗ = argmin
B?
L() (B? | 3, =), ( (B? | 3, =)) (7)

where, B?∗ is the optimal control parameter for the given scenario. L() (B? | 3, =), ( (B? | 3, =) depends on the
average R2C latency ) and the average stutter rate ( , both of which are influenced by the smoothness parameter
B? , as well as the device type 3 and the network type = . The optimization seeks to find the B?∗ that maximizes
the quality function under the given device and network conditions.

We define L(), () as:

L(), () = )

)<0G

+ (

(<0G

(8)

where) is the average R2C latency, normalized by)<0G , the maximum tolerable R2C latency (default value is 116
ms); ( is the average stutter rate, normalized by (<0G , the maximum tolerable stutter rate (default value is 5%).
To find the optimal B?∗, we use Bayesian Optimization [29] to tune the B? . For each configuration of B? , the
L(), () value is computed after collecting data from 5,000 sessions. We evaluate the parameter selection in
Section 6.3.
Discussion: potential online tuning of B?. The B? parameter values selected above are based on online

evaluation across representative device and network conditions, providing robust default settings. However,
optimal values for B? may change dynamically during playback due to evolving conditions or shifting user
preferences. An online tuning approach could periodically compare recent R2C latency and stutter metrics with
the user-indicated latency priority, adjusting B? accordingly to maintain the desired performance balance. Such
an adaptive controller has not yet been implemented and represents a promising direction for future work.
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5.3 Proactive Keyframe Requester
As illustrated in Section 4.3, if a reference frame is lost during transmission, subsequent frames must wait for it
to be retransmitted. This head-of-line blocking can cause excessive latency due to passive waiting in the jitter
buffer. For instance, the number of blocked frames can reach up to 29 frames (481 ms), as shown in Figure 13,
which can significantly impact latency.
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Fig. 13. A case of jitter buffer length dynamics
under wireless network.
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Fig. 14. A comparative illustration of waiting for retrans-
mission and proactively requesting a keyframe.

One possible solution for the client to reduce latency in this case is to drop certain waiting frames and request a
new keyframe, which can be decoded independently. However, in the default strategy, the client only requests a
keyframe when the frame cannot be decoded, usually after a stalling event has already occurred. Therefore, we
introduce a proactive keyframe request mechanism.

This mechanism may seem promising to avoid passive waiting. However, it does not necessarily reduce latency
since larger keyframes require more time to transmit. Additionally, dropping too many frames will significantly
affect smoothness. Figure 14 illustrates the two strategies: waiting for retransmission versus proactively requesting
a new keyframe. To this end, we develop two cost functions,*,08C and*'4@ , to determine whether to wait for the
retransmission of a lost frame or to proactively request a new keyframe and drop waiting frames.
The first function *,08C measures the latency cost of passive waiting, including the waiting time of the

retransmission and the decoding latency of existing frames. The following equation provides the definition :

*,08C =)')) + (& + 1) × )̄�42 , (9)

where )')) is the round-trip time (RTT) between the client and the server. Here, we assume that the lost packets
can be retransmitted in this RTT. )̄�42 is the average decoding latency of each frame, and & is the current frame
count in the buffer. The term & + 1 accounts for the missing frame when estimating the decoding latency.
The second function *'4@ measures the cost of proactively requesting a new keyframe. It accounts for the

round-trip time ()')) ), the estimated transmission time of the new keyframe (!<0G/�̂), the average decoding
latency of the frame ()̄�42 ), and the smoothness penalty for dropping existing frames (_ ×&). This function is
defined as:

*'4@ =)')) + !<0G/�̂ + )̄�42 + _ ×&, (10)
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Table 3. Symbols and their meanings in Algorithm 1.

Category Variable Meaning

Application
specific

�<0G Maximum buffer level threshold
_ Smooth penalty for dropping one frame
B? Smooth parameter

Receiver
internal
state

)̄�42 Average decoding latency
!0E6 Average size of received frames
!<0G Maximum size of received frames
!E0A Variance of frame sizes
& Current frame count in the buffer
� Frame interval
�̂ Estimated bandwidth

where all terms are expressed in milliseconds. The smoothness penalty _ represents the latency-equivalent cost
of dropping one frame. Since latency degrades QoE more than a brief loss of smoothness [45], the penalty should
stay below the 16.7 ms frame interval at 60 fps. We therefore set _ = 1

3 × 16.7 ≈ 5(ms).
In practice, when the client receives each video frame, it compares the two cost functions and follows the

lower-cost one as the action. Note that )')) appears in both functions and can be cancelled out, so it does not
need to be calculated.

5.4 Putting Everything Together
Algorithm 1 shows the complete algorithm of JitBright, working as follows: (i) Retrieving the smooth parameter
B? as input from the latency diagnostics. (ii) calculating the target level � of the jitter buffer based on Equations
2, 4, and 6, and the maximum buffer level threshold �<0G (default is 7 frames, i.e., �<0G = 7 × � ≈ 116 ms),
corresponding to Lines 1-4 in Algorithm 1; (iii) determining whether to passively wait for the retransmission or
to proactively request a new keyframe by comparing*,08C (Equation 9) and*'4@ (Equation 10), corresponding
to Lines 5-10 in Algorithm 1. The meaning of the symbols is listed in Table 3.

5.5 Implementation
We implement JitBright by modifying the sender’s pixel streaming configuration to change its keyframe frequency.
We modify the receiver side WebRTCmodule, especially VideoReceiveStream2 [40] and JitterEstimator [13] class to
support proactive keyframe request and adaptive gain. Additionally, we modified the PeerConnectionInterface [41]
to obtain the device and network type, which is provided by the application.

Local controlled testbed. To evaluate JitBright in the controlled environment, we set up a local testbed. The
client uses a Chromium browser running on a MacBook Pro with an M1 Pro processor, and the server is equipped
with an i9-13900KF CPU and an NVidia 3090 GPU. We modify the WebRTC module in the Chromium browser
to record the latency of each internal module on the client side. The client connects with the server via WiFi
connections. Evaluations are performed in both moving and stationary scenarios. In the moving scenario, the
client device moves along a fixed trajectory at walking speed within an office floor with 30 WiFi access points,
in which case the bandwidth fluctuates due to handovers between WiFi access points. The trajectory can be
traversed in three minutes. In the stationary scenario, the client and the server were placed adjacent to each
other. Each test is repeated ten times to eliminate random errors in the environment, and the average results are
recorded.
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Algorithm 1 Jitter Buffer Optimization Strategy
input: �<0G ; _; B? ; )̄�42 ; !<0G ; !0E6; !E0A ; & ; � ; �̂
output: �: target buffer level; enable_req: if enabling proactively requesting
On inserting frame into the jitter buffer
1: ( = B? × � × �̂
2: 608= = !E0A/(2
3: �C4BC = 608= × (!<0G − !0E6, 0)/�̂
4: � =min(�<0G , �C4BC )
5: enable_req = False
6: *,08C = (& + 1) × )̄�42

7: *'4@ = !<0G/�̂ + )̄�42 + _ ×&
8: if*,08C > *'4@ then
9: enable_req= True
10: end if
11: return �; enable_req

Online system deployment. The built-in browser engine in the application has integrated the webrtc library
that implements JitBright. In the online platform (as described in Section 4.1), we executed an A/B test to evaluate
the Default strategy against the JitBright strategy using a parameter setting of _=5 and different parameter B? as
defined in Table 5.

6 EVALUATION
This section extensively evaluates JitBright in both the controlled testbed and the wild mobile Internet.

6.1 Setup
Video setting. Our cloud rendering system maintains a constant video resolution of 1560x720 and a frame rate
of 60 fps. In this case, the frame interval will remain constant at 16.7ms if played at a consistent speed. The video
bitrate is dynamically determined by GCC [6, 30], the default adaptive bitrate mechanism in WebRTC.
Performance metrics.We use two types of metrics to evaluate JitBirght: (i) MTP and R2C latency, and (ii)

frame stutter rate, to measure the probability of a frame arriving later than two encoding frame intervals. This is
indicated by the playout (rendering) interval between two consecutive frames exceeding 34 ms.

Baselines. To evaluate the design choice of JitBright, we implement four representative jitter buffer manage-
ment baselines:
• Default WebRTC : The default jitter buffer management strategy inWebRTC-based cloud rendering systems.

It includes a periodic (every 300 frames) keyframe insertion from the server. We abbreviate this strategy
as Default.
• WebRTC w/o Keyframe: In this setting, the server does not proactively insert periodic keyframes. Instead,
a new keyframe is generated only when the client detects that a frame cannot be decoded and sends a
Picture Loss Indication (PLI) message via an RTCP packet, as defined in RFC 4585 [28].
• 0 Buffer : Disabling the jitter buffer in Default by decoding a frame as soon as it is decodable (i.e., its
reference frame exists). This strategy is common in previous studies that pursue extremely low latency,
while it may compromise smoothness [19, 24].
• 0 Buffer w/ Proactive Keyframe: 0 Buffer with proactive keyframe request, which also indicates JitBright
disabling the jitter buffer.
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6.2 Balancing Latency and Smoothness
We start by evaluating JitBright in the controlled testbed (Section 5.5). Here, we conduct tests in the moving
scenario to introduce network dynamics. The results are normalized by the maximum values. As shown in Figure
15, JitBright performs superior over these baselines, striking an optimal balance between R2C latency and playout
smoothness. Specifically, it demonstrates an average R2C latency of 50 ms and a stutter rate of 2.8%.
The Default strategy tends to maintain a high buffer level, thus achieving the lowest stutter rate and the

highest R2C latency (115 ms). This observation aligns with our analysis in Section 4.4. In contrast, by disabling
the jitter buffer, the 0 Buffer and 0 Buffer w/ Proactive Keyframe strategies achieve the lowest R2C latency,
however, significantly hindering the smooth playout. Additionally, the WebRTC w/o Keyframe strategy balances
the requirements between low latency (67 ms) and smoothness (with 3.6% stutter rate), but it still underperforms
JitBirght.
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Fig. 15. Performance of JitBright vs. baselines in controlled experiments.

Tail-latency comparison of key-frame strategies. Figure 16 shows that the 90th-percentile buffering
latency of JitBright, Default, and WebRTC w/o Keyframe is 16.0 ms, 105.0 ms, and 70.0 ms, respectively. Default
inserts a periodic keyframe every 300 frames in addition to any PLI-triggered frames; when the link degrades,
these large periodic keyframes take longer to transfer, and the client must passively wait for them, leading to the
longest tail. WebRTC w/o Keyframe disables periodic keyframes and depends solely on PLI, but the request is
sent only after the decoder detects a missing reference, so several dependent frames have already queued up; the
extra round-trip before the new keyframe arrives shortens the tail relative to Default but still leaves 70 ms at the
90th percentile. JitBright limits active waiting through its adaptive gain and, more importantly, sends a proactive
keyframe request before the buffer grows, which confines the P90 tail latency to just one frame interval (16 ms).
These results indicate that trimming unnecessary periodic keyframes and triggering an early request, guided by
the gain, are both crucial for reducing tail latency.

6.3 Parameter Selection
Next, we evaluate JitBright with different values of the smooth parameter B? in Equation 4 to identify the optimal
setting. Adjusting B? achieves a trade-off between playout smoothness and latency. Specifically, a larger value of
B? results in lower latency, while a smaller value leads to better smoothness.

Table 4. Performance of different B? settings in JitBright.

Strategy R2C latency Stutter Rate
JitBright(1) 37.6 ms 3.8%
JitBright(0.5) 38.4 ms 3.7%
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Fig. 16. CDF of buffering latency under three key-frame control strategies.

We choose B? = 1 and B? = 0.5 for JitBright and test them in the controlled testbed in a stable scenario, denoted
as JitBright(1) and JitBright(0.5), respectively. The results are presented in Table 4. The two values of B? exhibit
similarly in both average R2C latency and stutter rate.

We further validated the optimal selection of the sp parameter across different network and device scenarios.
The fine-tuned results are shown in Table 5. For high-end devices, the B? parameter is larger to optimize R2C
latency, while for lower-end devices, the B? is smaller. Additionally, the B? for WiFi and 5G networks is higher
than for 4G networks to accommodate longer tail latencies, as observed in Section 4.5.

Table 5. The parameter selection of B? for different network and device types

WiFi 4G 5G
High 1 1 1
Mid 0.8 0.7 0.75
Low 0.6 0.3 0.5

6.4 Large-scale Online A/B Tests
We finally report our large-scale A/B test results of deploying JitBright on the online cloud rendering system.
The system randomly assigns JitBright or the Default strategy to each user. Our evaluation was conducted from
October 8 to December 15, 2023, with 591,672 sessions. Various types of mobile devices were considered. The
evaluation also involved various mobile access networks, including 4G, 5G, and WiFi.

Reducing MTP latency for diverse networks and devices. JitBright reduces R2C latency across all network
types, consequently lowering MTP latency, as shown in Figure 17. For WiFi, JitBright reduces the P50 R2C latency
by 82.4% and P50 MTP latency by 32.7% compared to WebRTC. On 4G networks,JitBright achieves an 86.5%
reduction in P50 R2C latency and a 37.6% reduction in P50 MTP latency. For 5G, JitBright reduces P50 R2C
latency by 87.5% and P50 MTP latency by 21.0%. JitBright shows a significant reduction in R2C tail latency (90th
percentile) across WiFi (52.6%), 4G (11.3%), and 5G networks (62.4%). The reduction in tail latency is the smallest
on 4G networks because the B? is lower on 4G to optimize smoothness, as explained in Section 6.3. Additionally,
the longer network tail latency in 4G networks affects the frame arrival process, contributing to higher overall
latency, as observed in Section 4.5.
JitBright also reduces R2C latency across all device types, consequently lowering MTP latency, as shown

in Figure 18. For high-end devices, JitBright reduces P50 R2C latency by 82.4% and P50 MTP latency by 32.7%
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Fig. 17. Comparison of R2C and MTP latencies between WebRTC and JitBright across three different network types. The box
represents the interquartile range (IQR). The line inside the box marks the median (50th percentile). The whiskers extend to
1.5 times the IQR from the 25th and 75th percentiles.

compared to WebRTC. For mid-end devices, JitBright achieves a 67.0% reduction in P50 R2C latency and a 25.2%
reduction in P50 MTP latency. On low-end devices, JitBright reduces P50 R2C latency by 85.5% and P50 MTP
latency by 39.4%. JitBright also demonstrates a reduction in R2C tail latency (90th percentile) across all device
levels. For high-end devices, JitBright reduces R2C tail latency by 52.6%. On mid-end devices, the reduction is
22.4%, and for low-end devices, it is 4.0%. The smallest reduction on low-end devices can be attributed to their
generally higher baseline latency and more conservative smooth parameter B? , as explained in Section 6.3.
Enabling smooth playout.We also investigate whether JitBright can ensure smoothness. To evaluate the

smoothness across all sessions, we choose the session freeze rate as the smoothness metric, defined as the
percentage of sessions that experienced at least one freeze event. The freeze event count is originally provided in
WebRTC [43]. Our online results show that JitBright effectively reduces the video freeze rate, from 2.4%-2.8% to
0.4%-1.0%.

6.5 Overhead Evaluation
We profiled the two per-frame routines of JitBright: (i) an adaptive-gain update that tunes the jitter-buffer size
using current network statistics, and (ii) an enable-request check that decides whether to send a proactive key-
frame request. Both routines, implemented in C++, were instrumented with std::chrono and executed 200,000
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Fig. 18. Comparison of R2C and MTP latencies between WebRTC and JitBright across three different device grades.

times on two representative devices: an Android smartphone with a Snapdragon 888 (8 cores, 60 fps display) and
a desktop PC with an Intel i9-13900KF CPU running Windows 10 at 60 fps.
Results. Table 6 lists the average and worst-case execution time per frame. On the mobile device, the two

routines together cost only 0.5 µs on average, while the desktop overhead is even smaller. The implementation
maintains only a few scalar variables, resulting in a memory footprint below 8 KB.

The overhead is low because these routines leverage existing metrics (RTT, frame size, decode time) provided
by WebRTC, performing only lightweight arithmetic and comparisons, thus incurring negligible CPU overhead
on the client.

Table 6. Per-frame CPU cost of JitBright

Platform adaptive-gain update enable-request check
Avg (`s) Max (`s) Avg (`s) Max (`s)

Snapdragon 888 / 60 fps 0.3 47.1 0.2 38.5
i9-13900KF / 60 fps 0.2 33.8 0.2 45.9
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7 RELATED WORK
Measurement in Low-Latency Media Systems. Several studies have focused on measuring latency in cloud
gaming systems [7, 12, 19, 25, 45] or live streaming system [49, 50, 53]. Specifically, GamingAnywhere [19]
implements a cloud gaming system and conducts latency measurements across various modules at both the
sender and receiver end. However, this measurement were performed in controlled experimental environments.
Although large-scale measurements exist for live streaming systems [49, 50, 53], the interaction modalities and
latency requirements originally differ from those of cloud rendering systems. In contrast, our measurements
originate from extensive real-world deployments in online real-time cloud rendering, exclusively involving
mobile devices.
Optimization of Low-Latency Media Systems. To address the latency issues caused by client-side jitter

buffers, we examine both audio and video jitter buffer techniques in-depth, as detailed in [9, 48] and [34, 52].
However, the approach outlined in voice does not directly apply to the video domain. To the best of our knowledge,
the most relevant study to our research is conducted by Zhao et al. [52]. Their methodology primarily focuses on
reducing frame jitter buffer latency in live streaming environments. However, it does not address the latency
issues due to packet loss.
Client-side latency caused by long decoding latency is discussed in AFR [24]. Whereas AFR concentrates on

the latency arising from decoder queuing since it uses a near 0-buffer strategy in its client. Such strategy harms
playout smoothness as observed in Section 6.2.

8 CONCLUSION
This paper introduces JitBright, an adaptive jitter buffer optimization strategy aimed at reducing Motion-To-
Photon (MTP) latency in mobile cloud rendering. By addressing Receive-To-Composition (R2C) latency, the
primary contributor toMTP delay, JitBright optimizes buffer management with adaptive gain control and proactive
keyframe requests. Evaluations across over 591,000 sessions showed a significant reduction in R2C latency and
an improvement in playback smoothness. These results demonstrate JitBright’s effectiveness in balancing low
latency and smooth playout, with the potential for further refinements in dynamic network conditions.
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