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ABSTRACT
Low-latency cloud rendering services use high-performance servers
to provide mobile device users with exquisite graphics and conve-
nient access experiences. Due to the complexity of the system and
the diversity of impacting factors, identifying system bottlenecks
has become a significant challenge. To demystify system perfor-
mance, we build an online cloud rendering system to measure the
latency distribution of its key components.

Our real-world measurement study reveals that the primary
factor causing increased motion-to-photon (MTP) latency is the
receive-to-composition (R2C) latency at the client, which is pri-
marily caused by the ineffective jitter buffer management strategy.
Based on these findings, we propose JitBright, a systematic jitter
buffer optimization that deflates MTP latency. JitBright incorpo-
rates adaptive gain and proactive keyframe requests. Large-scale
A/B tests involving over 12,000 users demonstrate that JitBright
successfully reduces MTP latency while improving playout smooth-
ness. Specifically, JitBright increases the proportion of sessions that
meet MTP latency requirements by 6%-27%.
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Figure 1: Cloud rendering architecture and latency distribution.

1 INTRODUCTION
Real-time 3D rendering is significantly impacting e-commerce busi-
nesses by enhancing the customer shopping experience and offering
new ways to engage with products [33]. Cloud rendering technol-
ogy renders and streams video frames on servers to the mobile
client. This enables users to access 3D visuals in real-time through
mobile devices with limited computing resources. As a result, cloud
rendering is experiencing a remarkable growth in popularity [2, 3].

Cloud rendering demands stringent latency requirements due
to the necessity for user interaction. The demand for interaction
requires 100 ms [20] to 150 ms [9] Motion-To-Photon (MTP) latency,
which is the delay between user input (or motion) and the resulting
image update (or photon) on a display [4]. As shown in Figure 1,
MTP latency is categorized into three components: (i) Rendering
Engine (RE) latency, the time to render and encode a frame on
the server; (ii) Network Transmission (NT) latency, the total time
for uploading commands and downloading video frames; and (iii)
Receive-To-Composition (R2C) latency, the duration from receiving
the frame’s last packet to its display.

Through large-scale onlinemeasurements from a top e-commerce
APP in China (Section 2), we have identified the R2C delay as the
primary factor influencing MTP latency. R2C delay is produced in
three processes: buffering, decoding, and rendering. Our deeper
analysis indicates that the buffering latency constitutes the ma-
jor component in most (71.5%) cases. We further outline the root
causes of buffering latency into active waiting and passive waiting
in the frame buffer (i.e., jitter buffer). Active waiting occurs when
a frame is ready for decoding but waits to ensure smooth playout.
Passive waiting happens when a frame must wait for the arrival of
a reference frame it relies on for decoding.

In this paper, we introduce JitBright, a systematic jitter buffer
optimization strategy to reduce MTP latency by minimizing both
active and passive waiting latencies. To achieve this goal, JitBright
needs to address the following unique design challenges:

(i) Avoiding active waiting must balance the conflicting goals of
low latency and smooth playout. The default strategy employed
by WebRTC [27] clients is extremely conservative, resulting in
unnecessary increases in active wait latency. Conversely, several
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studies pursue extremely low latency by minimizing the buffer level
to zero [18, 23]. However, our evaluations in Section 4.2 indicate
that this zore-buffering approach significantly degrades playout
smoothness. To this end, JitBright introduces an adaptive gain
to control the buffer level based on the probability that a frame
will not play smoothly, thereby avoiding active waiting without
compromising smoothness (Section 3.1).

(ii) Avoiding passive waiting by requesting a keyframe is promis-
ing, but at the expense of latency and smoothness. Passive waiting
is caused by the decoding dependency between frames. An intu-
itive idea is to remove this dependency by proactively requesting a
keyframe that can be decoded independently. However, this method
may introduce additional latency or trigger stalling due to the long
transmission time of keyframes. As a solution, JitBright incorpo-
rates two cost functions to measure the cost of passive waiting
or proactive requesting, and determines the action following the
minimum cost (Section 3.2).

JitBright is designed to be lightweight and practical and thus is
easy to deploy.We have implemented and developed JitBright in our
real-world cloud rendering system (Section 3.4). Large-scale online
A/B tests with over 12,000 users demonstrate that JitBright success-
fully reduces MTP latency while improving playout smoothness
(Section 4). Specifically, JitBright increases the proportion of ses-
sions meeting MTP latency requirements (i.e., <150 ms) by 15%-23%,
9%-20%, and 6%-27%, in WiFi, 5G, and 4G networks, respectively.
Additionally, JitBright reduces the video freeze rate from 2.4%-2.8%
to 0.4%-1.0%.

2 MOBILE CLOUD RENDERING
PERFORMANCE IN THE WILD

This section presents a comprehensive measurement study on mo-
bile cloud rendering performance, based on a dataset of over 2000
users from a top e-commerce APP in China. Through analysis,
we identify the bottleneck of optimizing motion-to-photon (MTP)
latency, which motivates the design of JitBright.

2.1 Measurement Setup
Background. Our measurements are performed on a cloud ren-
dering service deployed inside the Taobao mobile app, a top e-
commerce APP in China. Figure 2 depicts the architecture of our
cloud rendering system. The system incorporates a server and a
mobile client. The server maintains the actual 3D models and ren-
ders them in real-time according to the user’s motions (e.g., moving,
changing viewpoints, etc.). Meanwhile, the server generates a video
stream of the models and transmits it to the mobile client. In this
way, the client can interact with lifelike 3D environments without
suffering from the high computing costs [17]. Consequently, the
user experience is impacted by MTP latency [31].

Online cloud rendering system. The cloud rendering service
is built using Unreal Engine [13], a state-of-the-art 3D rendering
engine famous for creating immersive 3D visualized environments.
The cloud rendering service operates on multiple rendering servers
in 4 geographically distributed data centers in China. Each server
creates a series of real-time images of 3D models, which are cap-
tured into a live video stream using Pixel Streaming [15]. This
stream is then composed and transmitted using WebRTC [27]. A

separate WebRTC signal server is used to set up WebRTC connec-
tions with the client. We choose WebRTC because it already serves
as a standard interactive video streaming framework [19] and is
widely supported by major web browsers and platforms [35], thus
facilitating large-scale deployments.

Users access the cloud rendering service through a virtual shop-
ping brand pavilion in the application on mobile clients. A session
starts with a user entering the virtual pavilion in the APP. The
mobile client first connects with the rendering server in the nearest
data center. Then, it continually sends real-time user commands
(e.g., motions like changing viewpoints) to the server through the
WebRTC Datachannel utilizing SCTP [1], and receives real-time
video streaming from the server by WebRTC.

Methodology. The cloud rendering system periodically (i.e.,
every 30 seconds) performs end-to-end online measurements to
record the latency of each component. Recalling Figure 1, in each
measurement, the client first sends a measurement message to
the server. Once the server receives the message (the first part of
NT Latency), it will provide feedback to the client regarding the
rendering and encoding time of the latest frame, corresponding
to RE Latency. After that, the server transmits the video frame to
the client (the second part of NT Latency). The client stores the
received frame in its frame buffer, and then decodes and renders it at
a specific time, which composes R2C Latency. The client calculates
latencies of each component using feedback from the server.

The latency of each component is obtained by modifying related
callback functions on both sides. Additionally, the user’s device
type and network access type are collected. Once the client record is
generated, it is immediately sent to the server for analysis. Although
each measurement involves multiple frames, only the first one’s
MTP latency is recorded. This is because generating, storing, and
transmitting the record of each frame is costly in the online system.

Dataset. The data collection spanned 18 days, from July 2 to
19, 2023. It encompassed 36 million frames, accumulated a total
video time of 166 hours, and involved over 2,000 users. Note that
only performance-related information was collected during the
anonymous user’s access, which does not raise any ethical issues.

2.2 Vivisecting MTP Latency in Mobile Cloud
Rendering

We first investigate the latency distribution of the three compo-
nents that compose MTP latency, i.e., RE latency, NT latency, and
R2C latency. The results in Figure 3 indicate that: (i) RE latency is
relatively stable, with an average value of 30 ms per frame. (ii) NT
latency exhibits a long-tailed distribution, as reported in previous
studies [21, 22, 37]. (iii) R2C latency accounts for the highest
proportion of MTP latency in most (57.2%) cases. These results
imply that MTP latency is primarily affected by R2C latency.

To confirm this conclusion, we further investigate the relation-
ship between R2C latency and MTP latency. We calculate the con-
ditional probability distribution between them, namely 𝑃 (𝑇𝑅2𝐶 >

𝑡𝑦 |𝑇𝑀𝑇𝑃 > 𝑡𝑥 ). Here,𝑇𝑅2𝐶 and𝑇𝑀𝑇𝑃 denote R2C and MTP latency,
respectively. 𝑡𝑥 and 𝑡𝑦 are latency values, corresponding to the hori-
zontal and vertical coordinates in Figure 4, respectively. The results
show that when MTP latency exceeds the latency requirements
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0 100 200 300
Latency (ms)

0.0

0.5

1.0

C
D

F R2C
Decoding
Buffering

Figure 5: R2C latency and its
two components.

(i.e., over 150 ms), over 50% of cases experience R2C latency over
100 ms (i.e., 2/3 of 150 ms), leading to the following observation:

Observation: Unsatisfactory MTP latency is dominated by
inflated R2C latency.

2.3 Key Factors Inflating R2C Latency
As we have identified R2C latency is the bottleneck in optimizing
M2P latency, the next question is:What are the primary factors that
inflate R2C latency?

Decomposing R2C latency. R2C latency corresponds to the
duration from the client receiving a video frame to the user see-
ing this frame played. Recalling Figure 1, the client establishes a
frame buffer, known as the jitter buffer, to store received frames
in timestamp order. The decoder fetches the earliest frame from
the jitter buffer, decodes it, and finally passes it to the renderer
for display. Hence, R2C latency is produced in three processes: (i)
Buffering, (ii) Decoding, and (iii) Rendering. Figure 5 shows the
latency distribution of each process. Note that rendering latency is
omitted because it is always less than 10ms [7]. The results show
that buffering latency is the key factor impacting R2C latency
in most (71.5%) cases.

Passive waiting

Active waiting
Jitter Buffer

#1

RendererDecoder
#2#3#4

#5#6#7#8

User

Figure 6: Active and passive waiting in the jitter buffer.

Understanding buffering latency. Buffering latency indicates
that a frame is waiting in the jitter buffer rather than being de-
coded. It is caused by two cases: active waiting and passive waiting,
as illustrated in Figure 6. Active waiting occurs when frames are
queued in the jitter buffer, awaiting their scheduled decoding (such
as frames #3 and #4). On the other hand, passive waiting occurs
when frames arrive out of order, and later frames (frame #8) cannot
be decoded because their previous reference frames (frame #7) have
not yet arrived. This phenomenon can be viewed as head-of-line
blocking of frames [10], and is usually caused by packet loss in the
transmission [29]. To explain, two types of frames exist in video
streaming: keyframe (I-frame) and delta frame (P-frame). While
each keyframe can be decoded as an independent image, each delta
frame must be decoded based on its reference frame, which is a
previous keyframe or delta frame.

Therefore, the root cause of the inflated R2C latency is:
Root cause: Active and passive waiting in the client jitter

buffer primarily inflates R2C latency.

2.4 Ineffective Jitter Buffer Scheduling Strategy
To analyze active and passive waiting behavior on the client side,
we perform controlled experiments on our local testbed (Section

3.4), for the ease of accessing fine-grained latency information. The
results (stationary, connected with WiFi) indicate that the latency
brought out by active waiting accounts for 72.8% of R2C latency
(not presented due to limited space). In this case, multiple successive
video frames are queued in the jitter buffer, waiting to be decoded.
In other words, R2C latency is primarily caused by the ineffective
jitter buffer scheduling strategy [12]. Jitter buffer aims to enable the
smooth playout of video frames. Specifically, when the bandwidth
suddenly drops or a frame is too large, causing the transmission
time to exceed the inter-frame interval (e.g., 16.7ms at 60 fps), the
frames in the jitter buffer can be played to avoid stalling or stutter.

Default strategy. The default scheduling strategy of the jitter
buffer in the WebRTC-based cloud rending system follows an in-
tuitive idea: the buffer level (denoted as 𝐵) should be higher when
the frame size (denoted as 𝐿) is fluctuating or the link bandwidth
(denoted as 𝐶) is insufficient, leading to the following:

𝐵 ∝
𝐿𝑚𝑎𝑥 − 𝐿𝑎𝑣𝑔

𝐶
, (1)

where∝ indicates "proportional to".𝐿𝑚𝑎𝑥 and𝐿𝑎𝑣𝑔 are the smoothed
maximum and average frame sizes (details in [41]), respectively. 𝐶
is the estimated bandwidth, using Kalman Filter [5].

Performance issue. In video streaming, the frame size is deter-
mined by both the frame type (keyframe or delta frame) and the
content complexity [28] when the target encoding bitrate is con-
stant. In particular, a keyframe is generally 4-10 times larger than a
delta frame [32], dominating the variation in frame size. Therefore,
𝐿𝑚𝑎𝑥 in Equation 1 always indicates the size of a keyframe. The
default strategy tends to maintain a larger number of frames in
the jitter buffer to avoid the smoothness affected by keyframes.
However, keyframes appear infrequently in the cloud rendering
system, with typically one keyframe every 300 frames, following
the common practice [14, 18]. Under this circumstance, the default
strategy is too conservative, resulting in unnecessary active waiting
and ultimately inflated R2C latency.

Figure 7 gives an example from experiments in our controlled
testbed. The client stays stationary and connects with the server
through an Ethernet cable. The frame rate is set to 60 fps. It can be
observed that the buffering latency suddenly increases from 12 ms
to 57 ms (4.8x) after the first keyframe appears, and remains at a
high level (over 52 ms) thereafter. R2C latency exhibits a similar
behavior, with an increase from 25 ms to 80 ms (3.2x).

In summary, our large-scale measurements of the online cloud
rendering system reveal that optimizing MTP latency is bottle-
necked by R2C latency. However, R2C latency is significantly af-
fected by the jitter buffer scheduling strategy on the client side.
This motivates us to explore an effective strategy that performs
well in the wild mobile Internet.
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Figure 7: The impact of maximum frame size and its frequency on
the estimated value of jitter delay.

3 DEFLATING MTP LATENCY BY JITBRIGHT
As illustrated in Section 2, the key to reducing MTP latency is
to improve the jitter buffer scheduling strategy. The ideal strategy
aims to optimize user experience by balancing two conflicting goals:
(i) reducing latency, to avoid MTP latency inflated than expected
(e.g., over 150 ms); and (ii) ensuring smoothness, to avoid frames
played at inconsistent speed or even stalling.

To this end, we propose JitBright, a systematic jitter buffer opti-
mization strategy that deflates MTP latency while ensuring smooth
playout. Specifically, JitBright introduces an adaptive gain and a
proactive keyframe request mechanism. The adaptive gain controls
the jitter buffer level based on the probability that a frame will not
play smoothly, thereby avoiding unnecessary active waiting. On the
other hand, the proactive keyframe request removes the decoding
dependency between frames, thus reducing passive waiting latency.

3.1 Adaptive gain
To balance the requirements of low latency for active waiting and
smooth playout, JitBright introduces an adaptive 𝑔𝑎𝑖𝑛 into the de-
fault strategy. That is, transform Equation 1 to the following:

𝐵 = 𝑔𝑎𝑖𝑛 ∗
(𝐿𝑚𝑎𝑥 − 𝐿𝑎𝑣𝑔)

𝐶
. (2)

Design principle. In principle, the 𝑔𝑎𝑖𝑛 should be proportional
to the probability of a frame not satisfying the smoothness require-
ment. That occurs when a frame exceeds the average size 𝐿𝑎𝑣𝑔 , and
the extra part cannot be transmitted within a single frame interval
(denoted as 𝐼 ). Consequently, this frame will arrive later than ex-
pected, resulting in uneven playout speed or a stall. The principle
of setting 𝑔𝑎𝑖𝑛 is formulated as:

𝑔𝑎𝑖𝑛 ∝ 𝑃 (𝐿 − 𝐸 (𝐿) ≥ 𝑆), (3)

where 𝐿 represents the random variable of frame size, and 𝐸 (𝐿)
means expected frame size, corresponding to 𝐿𝑎𝑣𝑔 . 𝑃 (·) indicates
the probability. 𝑆 is the amount of data that can be transmitted
within the frame interval 𝐼 . Note that 𝐼 is constant and directly
derived from the encoding frame rate. In our setting (Section 4), 𝐼 is
16.7ms for 60 fps video streaming. To further control the preferences
for latency or smoothness, we introduce a control parameter 𝑠𝑝
(smooth parameter) in 𝑆 , as presented in Equation 4. 𝑠𝑝 is set to 1.0
as discussed in Section 4.3.

𝑆 = 𝑠𝑝 × 𝐼 ×𝐶. (4)

Based on Chebyshev’s inequality [25], the upper bound on the
probability of violating the smoothness requirement is illustrated
by Equation 5.

𝑃 (𝐿 − 𝐸 (𝐿) ≥ 𝑆) < 𝑃 ( |𝐿 − 𝐸 (𝐿) | ≥ 𝑆) ≤ 𝑉𝑎𝑟 (𝐿)/𝑆2 . (5)

To this end, we define the 𝑔𝑎𝑖𝑛 considering the upper-bound
probability of a smoothness violation event, as in Equation 6.

𝑔𝑎𝑖𝑛 = 𝑉𝑎𝑟 (𝐿)/𝑆2 . (6)

Control logic. Smoothness is ensured when successive video
frames arrive at the client at a uniform speed. This occurs when the
variation in frame size (i.e.,𝑉𝑎𝑟 (𝐿)) is small or when the bandwidth
is sufficient (i.e., 𝑆 is large). In this case, the 𝑔𝑎𝑖𝑛 is small, leading
to a low buffer level as well as low latency. Otherwise, the 𝑔𝑎𝑖𝑛
will increase adaptively to reserve more frames in the jitter buffer,
achieving smooth playout. Due to the relatively wide upper bound
of the Chebyshev inequality, this algorithm initially favors smooth-
ness. In latency-sensitive scenarios, the smoothness parameter 𝑠𝑝
can be adjusted to meet the requirements, as described in Section 4.

There is a special case for this algorithm: when the client requests
a keyframe (see Section 3.2), the𝑔𝑎𝑖𝑛 is set to 1 and maintained until
the keyframe is received. This is because a large frame is expected
to arrive, and the client jitter buffer should be prepared for that.

3.2 Proactive Keyframe Request
As illustrated in Section 2.3, if a reference frame is lost during
transmission, subsequent frames must wait for it to be retransmit-
ted. This head-of-line blocking can cause excessive latency due to
passive waiting in the jitter buffer.

One possible solution in this case, is to request a new keyframe
and drop all the waiting frames in the buffer. In this way, the la-
tency can be reduced by removing the decoding dependency as a
keyframe is decoded independently. However, in the default strat-
egy, the client only requests a keyframe when the frame cannot be
decoded, usually after a stalling event has already occurred. There-
fore, JitBright introduces a proactive keyframe request mechanism.

Although requesting keyframes seems promising to avoid pas-
sive waiting, it does not necessarily reduce latency because larger
keyframes requiremore time to transmit. Additionally, dropping too
many frames will significantly affect smoothness. To this end, we
develop two cost functions, 𝑈𝑊𝑎𝑖𝑡 and 𝑈𝑅𝑒𝑞 , to determine whether
to wait for the retransmission of a lost frame or to proactively
request a new keyframe and drop waiting frames.

The first function 𝑈𝑊𝑎𝑖𝑡 measures the latency cost of passive
waiting, including the waiting time of the retransmission and the de-
coding latency of existing frames. The following equation provides
the definition :

𝑈𝑊𝑎𝑖𝑡 = 𝑇𝑅𝑇𝑇 +𝑄 ×𝑇𝐷𝑒𝑐 , (7)

where𝑇𝑅𝑇𝑇 is the round-trip time (RTT) between the client and the
server. Here, we assume that the lost packets can be retransmitted
in this RTT. 𝑇𝐷𝑒𝑐 is the average decoding latency of each frame,
and 𝑄 is the current frame count in the buffer.

The second function 𝑈𝑅𝑒𝑞 measures the cost of proactively re-
questing, including the waiting time for a new keyframe to arrive,
the decoding latency of this frame, and the cost of dropping existing
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Table 1: Symbols and their meanings in Algorithm 1.
Category Variable Meaning

Application
specific

𝐵𝑚𝑎𝑥 Maximum buffer level threshold
𝜆 Smooth penalty for dropping one frame
𝑠𝑝 Smooth parameter

Receiver
internal
state

𝑇𝐷𝑒𝑐 Average decoding latency
𝐿𝑎𝑣𝑔 Average size of received frames
𝐿𝑚𝑎𝑥 Maximum size of received frames
𝐿𝑣𝑎𝑟 Variance of frame sizes
𝑄 Current frame count in the buffer
𝐼 Frame interval
𝐶 Estimated bandwidth

frames. This function is defined as:

𝑈𝑅𝑒𝑞 = 𝑇𝑅𝑇𝑇 + 𝐿𝑚𝑎𝑥/𝐶 +𝑇𝐷𝑒𝑐 + 𝜆 ×𝑄, (8)

where 𝐿𝑚𝑎𝑥/𝐶 indicates the estimated transmission time of the new
keyframe and 𝜆 is a smooth penalty of dropping one frame (default
value is 5). 𝑇𝑅𝑇𝑇 indicates the time from when the client sends the
request to when it receives the first byte of the new keyframe1.

In practice, when the client receives each video frame, it com-
pares the two cost functions and follows the lower-cost one as the
action2.

3.3 Putting Everything Together
Algorithm 1 shows the complete algorithm of JitBright, working as
follows: (i) calculating the target level 𝐵 of the jitter buffer based on
Equations 2, 4, and 6, and the maximum buffer level threshold 𝐵𝑚𝑎𝑥

(default is 7 frames, i.e., 𝐵𝑚𝑎𝑥 = 7 × 𝐼 ≈ 116 ms), corresponding to
Lines 1-4 in Algorithm 1; (ii) determining whether to passively wait
for the retransmission or to proactively request a new keyframe by
comparing 𝑈𝑊𝑎𝑖𝑡 (Equation 7) and 𝑈𝑅𝑒𝑞 (Equation 8), correspond-
ing to Lines 5-10 in Algorithm 1. The meaning of the symbols is
listed in Table 1.

Algorithm 1 JitBright: Jitter Buffer Optimization Strategy
input: 𝐵𝑚𝑎𝑥 ; 𝜆; 𝑠𝑝 ;𝑇𝐷𝑒𝑐 ; 𝐿𝑚𝑎𝑥 ; 𝐿𝑎𝑣𝑔 ; 𝐿𝑣𝑎𝑟 ;𝑄 ; 𝐼 ;𝐶
output: 𝐵: target buffer level; enable_req: if enabling proactively requesting
On inserting frame into the jitter buffer
1: 𝑆 = 𝑠𝑝 × 𝐼 × 𝐶

2: 𝑔𝑎𝑖𝑛 = 𝐿𝑣𝑎𝑟 /𝑆2

3: 𝐵𝑡𝑒𝑠𝑡 = 𝑔𝑎𝑖𝑛 × (𝐿𝑚𝑎𝑥 − 𝐿𝑎𝑣𝑔, 0)/𝐶
4: 𝐵 = min(𝐵𝑚𝑎𝑥 , 𝐵𝑡𝑒𝑠𝑡 )
5: enable_req = False
6: 𝑈𝑊𝑎𝑖𝑡 = 𝑄 × 𝑇𝐷𝑒𝑐

7: 𝑈𝑅𝑒𝑞 = 𝐿𝑚𝑎𝑥 /𝐶 +𝑇𝐷𝑒𝑐 + 𝜆 × 𝑄

8: if 𝑈𝑊𝑎𝑖𝑡 > 𝑈𝑅𝑒𝑞 then
9: enable_req= True
10: end if
11: return 𝐵; enable_req

3.4 Implementation
We implement JitBright by modifying the sender’s pixel streaming
configuration to change its keyframe frequency. We modify the
receiver side WebRTC module, especially VideoReceiveStream2 [34]
and JitterEstimator [12] class. The default parameter setting in
JitBright is 𝑠𝑝=1 and 𝜆=5.

Local controlled testbed. To evaluate JitBright in the controlled
environment, we set up a local testbed. The client uses a Chromium
1𝑇𝑅𝑇𝑇 in both functions can be canceled out, so it does not need to be calculated.
2When requesting a keyframe, if lost packets of previous frames are received, there is
an additional cost due to the extra size of an I-frame over a P-frame. However, this
item is not included because the probability of such an event is difficult to determine.

browser running on a MacBook Pro with an M1 Pro processor, and
the server is equipped with an i7-13900K CPU and an NVidia 3090
GPU. We modify the WebRTC module in the Chromium browser to
record the latency of each internal module on the client side. The
client connects with the server via WiFi connections. Evaluations
are performed in both moving and stationary scenarios. In the
moving scenario, the client device moves along a fixed trajectory
at walking speed within an office floor with 30 WiFi access points,
in which case the bandwidth fluctuates due to handovers between
WiFi access points. Traversing the trajectory takes three minutes.
In the stationary scenario, the client and the server were placed
adjacent to each other. Each test is repeated ten times to eliminate
random errors, and the average results are recorded.

Online system deployment. The built-in browser engine in
the application has integrated the webrtc library that implements
JitBright. In the online platform (as described in Section 2.1), we
executed an A/B test to evaluate the Default strategy against the
JitBright.

4 EVALUATION
This section extensively evaluates JitBright in both the controlled
testbed and the wild mobile Internet.

4.1 Setup
Video setting. Our cloud rendering system maintains a constant
video resolution of 1560x720 and a frame rate of 60 fps. In this case,
the frame interval will remain constant at 16.7ms if played at a
consistent speed. The video bitrate is dynamically determined by
GCC [5, 26], the default adaptive bitrate mechanism in WebRTC.

Performance metrics.We use two types of metrics to evaluate
JitBirght: (i) MTP and R2C latency, and (ii) frame stutter rate, to
measure the probability of a frame arriving later than two encoding
frame intervals. This is indicated by the playout (rendering) interval
between two consecutive frames exceeding 34 ms.

Baselines. To evaluate the design choice of JitBright, we imple-
ment four representative jitter buffer management baselines:
• Default: The default jitter buffermanagement strategy inWebRTC-
based cloud rendering systems. It includes a periodic (every 300
frames) keyframe insertion from the server.

• Default w/o Keyframe: Default without server sending periodic
keyframe. In this case, the jitter buffer (as well as the latency) is
expected to remain at a low level.

• 0 Buffer : Disabling the jitter buffer in Default by decoding a frame
as soon as it is decodable (i.e., its reference frame exists). This
strategy is common in previous studies that pursue extremely
low latency, while it may compromise smoothness [18, 23].

• 0 Buffer w/ Proactive Keyframe: 0 Buffer with proactive keyframe
request, which also indicates JitBright disabling the jitter buffer.

4.2 Balancing Latency and Smoothness
We start by evaluating JitBright in the controlled testbed (Section
3.4). Here, we conduct tests in the moving scenario with the dy-
namic network. The results are normalized by the maximum values.

As shown in Figure 8, JitBright performs superior over these
baselines, striking an optimal balance between R2C latency and
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Figure 8: JitBright vs. baselines in controlled experiments.

playout smoothness. Specifically, it demonstrates an average R2C
latency of 50 ms and a stutter rate of 2.8%.

The Default strategy tends to maintain a high buffer level, thus
achieving the lowest stutter rate and the highest R2C latency (115
ms). This observation aligns with our analysis in Section 2.4. In
contrast, by disabling the jitter buffer, the 0 Buffer and 0 Buffer w/
Proactive Keyframe strategies achieve the lowest R2C latency, how-
ever significantly hindering the smooth playout. Additionally, the
Default w/o Keyframe strategy balances the requirements between
low latency (67 ms) and smoothness (with 3.6% stutter rate), but it
still underperformers JitBirght.

4.3 Parameter Selection
Next, we evaluate JitBright with different values of the smooth
parameter 𝑠𝑝 in Equation 4 to identify the optimal setting. Adjusting
𝑠𝑝 achieves a trade-off between playout smoothness and latency.
Specifically, a larger value of 𝑠𝑝 results in lower latency, while a
smaller value leads to better smoothness.

Table 2: Performance of different 𝑠𝑝 settings in JitBright.
Strategy R2C latency Stutter Rate
JitBright(1) 37.6 ms 3.8%
JitBright(0.5) 38.4 ms 3.7%

We choose 𝑠𝑝 = 1 and 𝑠𝑝 = 0.5 for JitBright and test them in the
controlled testbed in a stable scenario, denoted as JitBright(1) and
JitBright(0.5), respectively. The results are presented in Table 2. The
two values of 𝑠𝑝 exhibit similarly in both average R2C latency and
stutter rate. We finally choose 𝑠𝑝 = 1 for its lower latency.

4.4 Large-scale Online A/B Test
We finally report our large-scale A/B test results of deploying Jit-
Bright on the online cloud rendering system. The system randomly
assigns JitBright or the Default strategy to each user. Our evalu-
ation was conducted from August 3 to September 17, 2023, with
over 12,000 volunteer users and a total of 314 hours of video time.
Various types of mobile devices were considered. The device grades
were categorized into high, medium, and low according to their
CPU performance and benchmark scores [16]. Additionally, the
evaluation also involved various mobile access networks, including
4G, 5G, and WiFi.

Reducing MTP latency. Table 3 presents the performance im-
provement by JitBright versus the Default strategy across various
device grades and mobile access networks. Here, 150 ms is taken
as the bound of MTP latency. The online results demonstrate that
JitBright improves the proportion of MTP latency below 150 ms
ranging from 6% to 27%, successfully deflating the overall latency.

Enabling smooth playout. We also investigate whether Jit-
Bright can ensure smoothness. Since the stutter rate is difficult to

Table 3: The increase in the percentage of samples with MTP latency
<150 ms in the large-scale online A/B test.

WiFi 4G 5G
High +15% +27% +9%
Mid +13% +16% +20%
Low +23% +6% +15%

access directly in the online system, we choose another metric, the
freeze rate, which is the percentage of sessions that experienced at
least one freeze event. The freeze event count is originally provided
in WebRTC [36]. Our online results show that JitBright effectively
reduces the video freeze rate, from 2.4%-2.8% to 0.4%-1.0%. The
figure is omitted due to limited space.

5 RELATEDWORK
Measurement in Low-Latency Media Systems. Several studies
have focused on measuring latency in cloud gaming systems [6, 11,
18, 24] or live streaming system [39, 40, 42]. Specifically, Gamin-
gAnywhere [18] implements a cloud gaming system and conducts
latency measurements across various modules at both the sender
and receiver end. However, this measurement were performed in
controlled experimental environments. Although large-scale mea-
surements exist for live streaming systems [39, 40, 42], the inter-
action modalities and latency requirements originally differ from
those of cloud rendering systems. In contrast, our measurements
originate from extensive real-world deployments in online real-time
cloud rendering, exclusively involving mobile devices.

Optimization of Low-Latency Media Systems. To address
the latency issues caused by client-side jitter buffers, we examine
both audio and video jitter buffer techniques in-depth, as detailed
in [8, 38] and [30, 41]. However, the approach outlined in voice
does not directly apply to the video domain. To the best of our
knowledge, the most relevant study to our research is conducted by
Zhao et al. [41]. Their methodology primarily focuses on reducing
frame jitter buffer latency in live streaming environments. However,
it does not address the latency issues due to packet loss.

Client-side latency caused by long decoding latency is discussed
in AFR [23]. Whereas AFR concentrates on the latency arising from
decoder queuing since it uses a near 0-buffer strategy in its client.
Such strategy harms playout smoothness as observed in Section 4.2.

6 CONCLUSION
The interactive 3D cloud rendering system requires low Motion-To-
Photion (MTP) latency to improve the user experience. Through
large-scale online measurements, we find that MTP latency is
demonstrated by Receive-To-Composition (R2C) latency, which
is fundamentally caused by the ineffective jitter buffer schedul-
ing strategy on the client side. This paper proposes JitBright as
a systematic jitter buffer optimization strategy. Real-world A/B
tests with over 12,000 users demonstrate that JitBright effectively
reduces MTP latency while ensuring smooth playout.
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