
Chorus: Coordinating Mobile Multipath Scheduling
and Adaptive Video Streaming

Gerui Lv†§, Qinghua Wu†§‡, Yanmei Liu, Zhenyu Li†§‡, Qingyue Tan†§, Furong Yang†, Wentao Chen, Yunfei
Ma, Hongyu Guo, Ying Chen, Gaogang Xie§¶

†Institute of Computing Technology, Chinese Academy of Sciences
§University of Chinese Academy of Sciences ‡Purple Mountain Laboratories

¶Computer Network Information Center, Chinese Academy of Sciences

Abstract
Increasing bandwidth demands of mobile video streaming
pose a challenge in optimizing the Quality of Experience
(QoE) for better user engagement. Multipath transmission
promises to extend network capacity by utilizing multiple
wireless links simultaneously. Previous studies mainly tune
the packet scheduler in multipath transmission, expecting
higher QoE by accelerating transmission. However, since
Adaptive BitRate (ABR) algorithms overlook the impact of
multipath scheduling on throughput prediction, multipath
adaptive streaming can even experience lower QoE than
single-path. This paper proposes Chorus, a cross-layer frame-
work that coordinates multipath scheduling with adaptive
streaming to optimize QoE jointly. Chorus establishes two-
way feedback control loops between the server and the client.
Furthermore, Chorus introduces Coarse-grained Decisions,
which assist appropriate bitrate selection by considering
the scheduling decision in throughput prediction, and Fine-
grained Corrections, which meet the predicted throughput
by QoE-oriented multipath scheduling. Extensive emulation
and real-world mobile Internet evaluations show that Chorus
outperforms the state-of-the-art MPQUIC scheduler, improv-
ing average QoE by 23.5% and 65.7%, respectively.

CCS Concepts
• Networks→Mobile networks; Cross-layer protocols.

Keywords
Multipath QUIC, Adaptive Video Streaming, QoE

Co-first authors: Gerui Lv, Qinghua Wu. Corresponding authors: Zhenyu
Li, Gaogang Xie. Email: {lvgerui, wuqinghua, zyli, tanqingyue22s, yang-
furong}@ict.ac.cn, xie@cnic.cn.

ACM MobiCom ’24, Nov. 18-22, 2024, Washington, D.C., USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0489-5/24/09.
https://doi.org/10.1145/3636534.3649359

ACM Reference Format:
Gerui Lv†§, Qinghua Wu†§‡, Yanmei Liu, Zhenyu Li†§‡, Qingyue
Tan†§, Furong Yang†, Wentao Chen, Yunfei Ma, Hongyu Guo, Ying
Chen, Gaogang Xie§¶. 2024. Chorus: Coordinating Mobile Mul-
tipath Scheduling and Adaptive Video Streaming. In Proceedings
of The 30th Annual International Conference On Mobile Computing
And Networking (ACM MobiCom ’24). ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3636534.3649359

1 Introduction
Recent years have witnessed the popular trend of HTTP-
based mobile video applications [71], from traditional video-
on-demand (VoD) [35, 52, 95] and live video [38, 45, 78]
to 360° panoramic video [18, 62, 84] and volumetric video
[47, 81] that are applied in Augmented/Virtual/Mixed Real-
ity (AR/VR/MR). To adapt the video quality to fluctuating
bandwidth, HTTP-based adaptive streaming (HAS) is widely
deployed in commercial video services [6, 7, 53]. HAS en-
codes video content into multiple quality (bitrate) represen-
tations, each divided into chunks of equal playback duration
(usually 2-5 seconds). Adaptive BitRate (ABR) algorithms in
the client player, which dynamically select the bitrate for
each chunk based on throughput prediction, play a crucial
role in optimizing the Quality of Experience (QoE), including
maximizing video bitrate and minimizing rebuffering time.

The rapid increase in bandwidth requirements (tens [4, 68,
71, 84] to hundreds [29] of Mbps) of emerging video applica-
tions poses significant challenges to maintaining consistent
high-quality delivery in mobile networks. As a promising
solution, multipath transmission [25, 48] extends network
capacity by aggregating the bandwidth of different wireless
links (e.g., WiFi and 5G). Packet scheduler, the core compo-
nent in multipath transmission, determines when, how, and
in what order to assign packets to all subflows (referred to
as "paths" in this paper), to optimize transport performance,
i.e., higher throughput or shorter transmission time.

While multipath transmission is expected to provide per-
formance no worse than the best single-path [65], our com-
prehensive evaluations in emulated and real-world mobile
adaptive streaming (§5.2 and §5.5) show that even with
higher chunk throughput, the ABR algorithm can still no-
tably experience much lower QoE on multiple paths than

246

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3636534.3649359
https://doi.org/10.1145/3636534.3649359
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3649359&domain=pdf&date_stamp=2024-05-29

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

on a single path, especially in highly dynamic networks.
This QoE degradation is attributed to frequent severe re-
buffering events in multipath adaptive streaming, primarily
due to incorrect bitrate selection rather than deficient trans-
port performance. The root cause of this issue is that ABR
algorithms overlook the impact of multipath scheduling on
perceived throughput, resulting in inaccurate throughput pre-
dictions. Previous studies havewidely reported the significant
impact of multipath scheduling on application throughput
[30, 43, 46, 70]. Yet, since scheduling typically operates after
the bitrate selection for each video chunk, it is overlooked
by ABR algorithms. Consequently, multipath scheduling in-
troduces additional uncertainty into ABR throughput predic-
tions, leading to incorrect bitrate decisions and ultimately
catastrophic QoE degradation [57, 96].
To address this issue, our key idea is to coordinate multi-

path scheduling and ABR algorithms to optimize QoE jointly.
This coordination aims to meet two necessary conditions
for improving QoE in mobile adaptive streaming: (i) ensur-
ing appropriate bitrate selection and (ii) providing transport
performance that satisfies QoE requirements. While the idea
may appear straightforward in principle, its practical imple-
mentation presents the following unique challenges.

(i) How can coordination between the server transport layer
and the client application be achieved? The multipath packet
scheduler and the ABR algorithm reside in distinct network
protocol layers and endpoints. The former operates within
the server protocol stack, whereas the latter is situated in
the client video player. Although cross-layer coordination
on a single side has been achieved in previous work [99],
practically coordinating both protocol layers and endpoints
remains challenging.

(ii) How can multipath scheduling enhance throughput pre-
diction for ABR algorithms? Numerous studies on single-path
adaptive streaming have emphasized that chunk throughput
prediction is vital in ABR algorithms for QoE optimization
[50, 56, 79, 89, 90, 95, 100]. However, according to our analy-
sis, multipath scheduling complicates throughput prediction
of ABR algorithms, leading to potential QoE degradation. A
significant challenge arises because most multipath sched-
ulers operate during each chunk’s transmission. This pre-
vents ABR algorithms from foreseeing scheduling decisions
and incorporating them into throughput predictions. Regret-
tably, little effort has been directed to improve multipath
throughput prediction in mobile adaptive streaming.

(iii) How can multipath scheduling satisfy the QoE require-
ments while minimizing costs? Multipath scheduling endeav-
ors to strike a balance between transport performance and
costs [30, 42, 98]. For instance, previous studies carefully con-
trol reinjection in multipath transmission (§2.1). However,
without explicit awareness of QoE requirements, achieving
this balance is difficult in multipath adaptive streaming. One

underlying question is: To what extent of transport perfor-
mance should be provided by multipath scheduling to avoid
QoE degradation? If there is no clear guidance, even if the
ABR algorithm accurately predicts throughput, multipath
scheduling may struggle to meet the expected transport per-
formance within cost limitations.
(iv) How can the coordination design be compatible with

standard architectures with minimal effort? Both multipath
transmission and mobile adaptive streaming have been al-
ready applied in large-scale production [6, 7, 10, 53, 98]. For
massive deployment, it is important to ensure that this co-
ordination design can be easily integrated into real-world
systems. On the one hand, multipath scheduling should be
able to interact with existing web servers with minimal mod-
ifications. On the other hand, the design should be accessi-
ble for application providers to adopt, without introducing
prohibitive overhead, especially given the constrained com-
putational capacity of mobile devices.
In this paper, we propose Chorus, a cross-layer frame-

work that coordinates multipath scheduling with mobile
adaptive streaming to optimize QoE jointly. Chorus intro-
duces a novel design namedCoarse-grainedDecisions and
Fine-grained Corrections (CD&FC) (§3) to ensure appro-
priate bitrate selection and provide expected-time-oriented
transport performance. The CD phase (§3.3) achieves better
multipath chunk throughput prediction by predetermining
chunk-level packet scheduling decisions, and the FC phase
(§3.4) meets the predicted throughput while balancing trans-
port efficacy and cost considerations. To accomplish this,
Chorus incorporates two-way feedback control loops be-
tween the server transport layer and the client application.
We have implemented Chorus using a user-space QUIC

library [2] and integrated Chorus into a real-world mobile
video systemwith minimal modifications (§4), encompassing
both the web server [73] and the mobile video player [16].
Extensive evaluations in both emulated and wild mobile

networks confirm the consistent superiority of Chorus in op-
timizing QoE, attributed to its better multipath throughput
prediction and adequate transport performance with mini-
mal costs (§5). In real-world scenarios, Chorus improves the
average overall QoE by 65.7%∼114.4% over XLINK, a state-
of-the-art QoE-driven multipath scheduler for short videos,
and single path QUIC. Furthermore, Chorus relies on only
a few assumptions and computational resources, making it
robust and practical to deploy in mobile video applications.

In summary, this paper makes the following contributions:
(i) Reporting the performance issue arising from adaptive
streaming uncoordinated with multipath transmission; re-
vealing the root cause and the fundamental solution (§2). (ii)
Designing Chorus, a close-loop coordination framework that
ensures effective bitrate control for mobile adaptive stream-
ing (§3). (iii) Implementing Chorus based on multipath QUIC

247

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

and integrating it into a real-world mobile video system
(§4). (iv) Thoroughly evaluating Chorus in mobile networks,
confirming its consistently high performance (§5).

2 Background and Motivation
2.1 Background
ABR algorithms in video streaming. ABR algorithms are
vital for the application layer to optimize QoE in mobile
adaptive streaming [1, 35, 37, 52, 77, 89, 90, 95]. The simplest
ABR algorithm (rate-based) selects a bitrate no greater than
the predicted throughput [37]. State-of-the-art ABR algo-
rithms, on the other hand, take both buffer occupancy and
throughput predictions as input. They predict the perceived
QoE of each decision using control-theory [76, 90, 95] or
deep-learning [33, 51, 52] methods and select bitrates that
maximize the overall session’s predicted QoE. To achieve this,
ABR algorithms must resolve the conflict between achieving
high bitrate, low rebuffering time, and few bitrate switches.
Multipath transport mechanism. As the most widely

used multipath technique of the transport layer, Multipath
TCP (MPTCP) [25] is supported by commercial mobile de-
vices, such as iOS [10] and Android [9] smartphones. How-
ever, MPTCP requires OS-level support, which presents chal-
lenges formobile application providers to conduct customized
optimization. As an alternative, Multipath QUIC (MPQUIC)
[19, 48, 83, 98] takes advantage of the user-space property
of QUIC transport protocol [36, 41], and thus can be easily
modified and integrated into mobile applications.
The packet scheduler is the core component in multi-

path transmission that aims to optimize transport perfor-
mance by determining when, how, and in what order to
assign each packet to each path, usually at the RTT level.
Both MPTCP and MPQUIC use MinRTT [66] as their de-
fault scheduler, which selects a path with the smallest RTT
and available congestion window (CWND) to send pack-
ets each time. However, numerous studies have shown that
MinRTT performs poorly on highly heterogeneous paths
because it assigns excessive packets to slow paths (e.g., with
higher RTT) and thus underutilizes fast paths. Previous
works have proposed two ways to address this issue. (i)
Reinjection [26, 30, 42, 66, 98]: By retransmitting packets of
slow paths on fast paths, the scheduler can ensure multipath
transport performance no worse than the best single path at
the cost of redundancy. (ii) Out-of-order sending for in-order
arrival [23, 30, 40, 46, 70, 72, 74, 87, 91]: By assigning more
packets (depending on the prediction) to fast paths than their
CWNDs, the scheduler can utilize the aggregated bandwidth
of all paths, but this comes at the risk of prediction error.
2.2 Ineffective Multipath Adaptive Streaming
Multipath transmission seeks to optimize transport perfor-
mance, i.e. higher throughput or shorter completion time,

through packet scheduling [30, 46, 74, 98]. However, enhanc-
ing multipath scheduling independently does not necessar-
ily induce QoE improvements for adaptive video streaming,
which has its own control module (i.e., ABR algorithms) and
optimization target (i.e., QoE metrics).

In our extensive testing on both emulated (§5.2) and real-
world (§5.5) mobile networks, we evaluated multipath adap-
tive streaming using XLINK [98], a state-of-the-art packet
scheduler. Notably, our results revealed that XLINK-based
adaptive streaming underperforms compared to the best
single-path (SP) in scenarios with highly fluctuating band-
widths. It showed an 11.7% lower bitrate and a 6.2% increase
in rebuffering time on average, as depicted in Fig. 1a.
Higher throughput while lower QoE. The counter-

intuitive results of multipath adaptive streaming can be ex-
plained by a case study. The test contains two paths over a
60-second span (24s-84s): Path one (the primary path) has
bandwidths of 0.5-13.1 Mbps (avg. 10 Mbps, std. dev. 2 Mbps),
and Path two ranges from 0-77.7 Mbps (avg. 10.4 Mbps, std.
dev. 14.2 Mbps), as shown in Fig. 1b. This type of highly dy-
namic bandwidth is common in mobile networks, e.g., caused
by handovers that occur betweenWiFi access points or cellu-
lar base stations. MPC [95] is used as the ABR algorithm and
runs over SP and MinRTT+RI. MinRTT+RI allows unlimited
packet reinjection (RI) when CWND is available, seen as the
upper-bound performance for XLINK and MinRTT [98]. Fig.
1c and Fig. 1d show that MinRTT+RI indeed improves trans-
port performance, achieving 17.5% higher average chunk
throughput than SP over the 60 seconds. However, this im-
provement brings a 4.4% increase in total bitrates, but also a
4.7x increase in total rebuffing time, eventually resulting in
a 20.6% decrease in total QoE (Eq. 11).
Inaccurate multipath throughput prediction. Upon

deeper analysis, we have identified that the reason account-
ing for these results ismultipath-based ABR algorithm is more
likely to make incorrect decisions due to inaccurate throughput
predictions. Fig. 1d shows that MinRTT+RI-based ABR over-
estimates the real chunk throughput by 2.3x at time 53. This
prediction error leads to selecting the highest bitrate chunk
(16 Mbps) and a severe rebuffering event lasting 3.4 sec-
onds. In comparison, after a 0.6-second rebuffering event at
time 35 due to a 41.2% overestimation, SP-based ABR quickly
switches to lower bitrates for subsequent chunks and success-
fully avoids future rebuffering. By time 70, with a sufficient
buffer accumulated, SP-based ABR resumes requesting the
highest bitrate (Fig. 1c). MinRTT+RI’s ABR algorithm shows
more prediction errors, averaging 30.3%, compared to SP.
This phenomenon is pervasive in our tested scenarios,

where total average path bandwidths fall below the top video
bitrate, although MinRTT+RI achieves 3.9% higher bitrate
than SP, it also increases the rebuffering time by 7.3%, result-
ing in reduced QoE (Fig. 10b). Additional results indicate that

248

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

405060
Rebuffer Time (s)

200

300

400

Bi
tra

te
 (M

bp
s)

 Bett
er

XLINK SP

(a) QoE Metrics

24 44 64 84
Timestamp (s)

0

20

40

60

80

Ba
nd

w
id

th
 (M

bp
s)

Path1 Path2

(b) Paths’ Bandwidth

24 34 44 54 64 74 84
Timestamp (s)

0
5

10
15
20

Th
ro

ug
hp

ut
 o

r
Bi

tra
te

 (M
bp

s)

0
1
2
3
4

Re
bu

ffe
rin

g
Ti

m
e

(s
)

Real Thrpt Pred. Thrpt Bitrate Rebuff. Time

(c) A Case of SP-based ABR

24 34 44 54 64 74 84
Timestamp (s)

0
5

10
15
20

Th
ro

ug
hp

ut
 o

r
Bi

tra
te

 (M
bp

s)

0
1
2
3
4

Re
bu

ffe
rin

g
Ti

m
e

(s
)

Real Thrpt Pred. Thrpt Bitrate Rebuff. Time

(d) A Case of MinRTT+RI-based ABR
Figure 1: Comparisons of multipath and single-path adaptive streaming performance in mobile networks.

MinRTT+RI is more prone to overestimating throughput than
SP, evidenced by its 18.2% greater overestimation error rate
at the 95th percentile (details omitted due to limited space).
2.3 Culprit: Overlooked Multipath Scheduling
Since ABR adopts the same throughput predictor for both
MinRTT+RI and SP, each should have equivalent chances of
prediction errors due to dynamic path bandwidth. Therefore,
the observed consistent overestimation in multipath trans-
mission mainly stems from its unique component: packet
scheduling, which is analyzed by the following formulation.
When transmitting chunk 𝑘 of size 𝑆𝑘 over 𝑁 paths, the

average bandwidth of the 𝑛-th path is denoted as 𝐵 (𝑛)
𝑘

. The
chunk transmission time𝐷𝑘 is derived from the longest trans-
mission times among all paths. Given that adaptive video
streaming uses a video chunk as the basic transmission unit,
all packets of an entire chunk must be received as a complete
HTTP response on the client side before being passed to
the video player. Hence, the chunk performance is primarily
determined by the assignment ratio of packets over different
paths (denoted as 𝛼 (𝑛)

𝑘
∈ [0, 1], satisfying ∑𝑁

𝑛=1 𝛼
(𝑛)
𝑘

= 1),
rather than the packet transmission order. Consequently, the
following equation holds for various packet schedulers:

𝐷𝑘 = max{𝛼 (1)
𝑘

𝑆𝑘/𝐵 (1)𝑘 , . . . , 𝛼
(𝑁)
𝑘

𝑆𝑘/𝐵 (𝑁)𝑘
} . (1)

The chunk’s throughput 𝐶𝑘 is 𝑆𝑘/𝐷𝑘 [27, 50], leading to:
𝐶𝑘 = min{𝐵 (1)

𝑘
/𝛼 (1)
𝑘

, . . . , 𝐵
(𝑁)
𝑘
/𝛼 (𝑁)
𝑘
} . (2)

Eq. 2 clearly illustrates the impact of the scheduling decision
on chunk throughput. Notably, even if the ABR algorithm pre-
cisely knows the bandwidth of all paths (𝐵 (𝑛)

𝑘
), it still cannot

accurately predict chunk throughput without information
on the packet assignment across paths, i.e., 𝛼 (𝑛)

𝑘
. Particularly,

over-assigning packets to paths with lower bandwidth will
result in diminished chunk throughput, causing the ABR
algorithm to potentially overestimate actual throughput.

In situations of fluctuating link bandwidth, the assignment
ratio of packets also varies for consecutive chunks. This is
because the packet scheduler frequently adjusts scheduling
decisions in response to the dynamic network environment.
As presented in Fig. 2a, MinRTT+RI’s assignment ratio on
the primary path (path 1) for each chunk undergoes signifi-
cant changes in the 60-second case. Specifically, at time 47,
the ratio suddenly increases from 0.65 to 0.98, attributed to a

24 44 64 84
Timestamp (s)

0.6

0.8

1.0

(a) Path Ratio

24 34 44 54 64 74 84
Timestamp (s)

0
5

10
15
20

Th
ro

ug
hp

ut
 o

r
Bi

tra
te

 (M
bp

s)

0
1
2
3
4

Re
bu

ffe
rin

g
Ti

m
e

(s
)

Real Thrpt Pred. Thrpt Bitrate Rebuff. Time

(b) MinRTT+RI with Path Assignment Ratio
Figure 2: The Case of MinRTT+RI-based ABR performing
with awareness of path assignment ratio.

sharp decline in the bandwidth of path 2 (Fig. 1b). However,
the ABR algorithm overlooks this change, persistently over-
estimating the real throughput, and eventually triggering
severe rebuffering at time 53 (the next chunk).

Multipath packet schedulers determine their decisions for
each chunk after the bitrate selection and thus are overlooked
by ABR algorithms. Indeed, adaptive streaming operates as
a prediction-based optimal control system [52, 95], whereas
multipath scheduling is a black box to its core control module
(ABR algorithms). This increases prediction uncertainties and
further results in control failures, i.e., inappropriate bitrate
decisions that significantly impact sessions’ QoE [57, 96].
2.4 Rescue: Incorporating Scheduling Information
The fundamental problem in multipath adaptive streaming
is that: Can the QoE be improved by considering scheduling
information in throughput prediction?
To answer this question, we introduced a new multipath

throughput predictor for MinRTT+RI-based ABR, employ-
ing Eq. 2 with complete knowledge of multipath scheduling.
The path bandwidth 𝐵 (𝑛)

𝑘
is predicted according to its receiv-

ing rate in past chunks (details in §3.3.2). While the actual
packet assignment ratio can be obtained from offline Min-
RTT+RI logs, it is unattainable online. Through replaying
the 60-second test in simulation (akin to [52]), results in
Fig. 2b demonstrate that the ABR algorithm informed of
multipath scheduling yields throughput predictions more
aligned with reality. Particularly at the 47-second mark, sens-
ing the scheduling change led to proactive throughput and
bitrate adjustments. As a result, this new approach reduced
rebuffering times to just 0.06s, enhancing the total QoE by
22.1% compared to the original MinRTT+RI-based ABR.
In summary, our analyses reveal that superior transport

performance does not necessarily translate to enhanced QoE

249

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

for ABR algorithms. The root cause is that ABR algorithms
are blind to the impact of multipath scheduling on perceived
throughput, thereby leading to more prediction errors and
further severe QoE degradation due to incorrect bitrate deci-
sions. At a high level, adaptive streaming is uncoordinated
with multipath scheduling in dynamic mobile networks. Al-
though incorporating scheduling information into through-
put prediction can improve QoE, applying this insight to
the existing layered design is almost infeasible, prompting
us to consider cross-layer coordination between multipath
scheduling and ABR algorithms.

3 Chorus Design
We propose Chorus, a cross-layer framework that coordi-
nates multipath scheduling with ABR algorithms to optimize
QoE jointly. This section presents Chorus’s design goals and
challenges (§3.1), as well as an overview (§3.2) and detailed
design of the framework (§3.3 and §3.4).
3.1 Design Goals and Challenges
Chorus takes two necessary conditions for ABR algorithms
to optimize QoE as its goals: (i) ensuring appropriate bi-
trate selection and (ii) providing transport performance that
meets the needs of ABR algorithms. However, two unique
challenges in designing Chorus need to be addressed.
Challenge 1: How can ABR algorithms be assisted in ap-

propriate bitrate decisions under multipath scenarios? While
throughput prediction of ABR algorithms is vital for QoE op-
timization [50, 56, 79, 89, 90, 95, 100], multipath scheduling
complicates chunk throughput prediction, as presented in
§2.3. Notably, little work has been done to enhance multipath
throughput prediction for adaptive streaming, leaving a gap
in readily available solutions.

Solution: The transport mechanism determines the send-
ing rate, eventually affecting the application’s perceived
throughput [13, 50]. As previous works have proved that
mitigating this impact is feasible [82, 99], Chorus predeter-
mines the scheduling decision for the entire chunk before
transmission and informs ABR algorithms of this decision.
This coordination reduces uncertainty in multipath through-
put prediction. Chorus also considers bandwidth changes
on each path and thus achieves better predictions, which
directly assists ABR logic in making appropriate decisions.
Challenge 2: How to provide transport performance that

satisfies QoE requirements in mobile networks? As ABR algo-
rithms essentially make decisions that maximize predicted
QoE [52, 95], they achieve optimal performance only if the
transport layer guarantees the transmission time they ex-
pect. However, rapid changes in mobile networks during
the chunk transmission may invalidate Chorus’s previous
one-shot chunk-level scheduling, resulting in increased trans-
mission time and thus rebuffering events.

Video Player Web Server

Client Server

Control

Expected Time

Transport Layer Multipath
Scheduling

Feedback

Control

Control Loop 1 Control Loop 2

Scheduling Decision

Path Ratio

Bitrate Decision

Feedback

Figure 3: Chorus overview: two-way feedback control loops.

Solution: The difference in decision granularity between
application (chunk-level) and transport layers (packet-level)
provides an opportunity to correct the non-optimal decision
by utilizing the fine-grained nature of the transport layer. If
necessary, Chorus can reschedule and reinject packets during
transmitting each chunk to accommodate ABR algorithms
and address the previous decision error.
3.2 Chorus Overview
Chorus aims to optimize QoE for mobile multipath adaptive
streaming by coordinating the server transport layer (multi-
path scheduling) with the client application (ABR algorithm).

To achieve this goal, Chorus incorporates two-way feed-
back control loops, as illustrated in Fig. 3. By utilizing
the QOE_CONTROL_SIGNAL frame (QoE frame for short)
in MPQUIC [49, 98], Chorus facilitates a bidirectional ex-
change of information between the server and client across
different layers. As a result, both entities can collaboratively
work towards a unified goal: optimizing QoE. Specifically,
the client-side ABR algorithm predicts chunk throughput
based on the server’s pre-determined scheduling decision
(Path Ratio in Fig. 3). In turn, the server packet scheduler
adjusts its decision during chunk transmission in dynamic
conditions, to meet the expected transmission time of the
ABR algorithm (Expected Time in Fig. 3). Note that the two
control loops operate on different time grains.

Before Chunk Transmission

Coarse-grained Decisions (CD)

One-shot Scheduling (§3.3.1)

Throughput Prediction (§3.3.2)

Bitrate Selection

Path Ratio

Pred Throughput

During Chunk Transmission

Fine-grained Corrections (FC)

Sedate Rescheduling
(§3.4.1)

Expected-time-oriented
Reinjection (§3.4.2)

On Server

On Client

Figure 4: The submodules of Chorus’s CD&FC.

Chorus introduces a novel design called Coarse-grained
Decisions and Fine-grainedCorrections (CD&FC), which
is depicted in Fig. 4. The CD phase takes place before trans-
mitting a chunk, while the FC phase operates during the
chunk transmission. In the CD phase (§3.3), Chorus first
predetermines the scheduling decision of all packets in the
chunk, then predicts throughput for this chunk based on that
decision and selects the bitrate. Once the transmission of the

250

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

chunk starts, Chorus enters the FC phase (§3.4) and corrects
the initial one-shot scheduling if it is non-optimal by Sedate
Rescheduling and Expected-time-oriented Reinjection.

Chorus is illustrated with two paths for convenience, but
not confined to any specific number of paths, which can be
easily extended to more paths (see §6).
3.3 Coarse-grained Decisions (CD)
In the CD phase, Chorus coordinates the SERVER with the
CLIENT to predetermine the chunk-level scheduling deci-
sion for bitrate selection. This process operates as follows:
(i) Informing Scheduling Decision: Periodically (every 200ms,
see §5.4), the SERVER sends a QoE frame to the CLIENT, en-
capsulating its latest scheduling decision, namely the path
assignment ratio (𝛼 in Eq. 3). (ii) Throughput Prediction: Using
the last received scheduling information, the CLIENT predicts
the next chunk’s multipath throughput, calculates the cor-
responding expected transmission time given the selected
bitrate and sends it to the SERVER via a QoE frame. This ex-
pected time is utilized in the subsequent FC phase (§3.4). (iii)
Bitrate Selection: The CLIENT feeds the ABR algorithm with
the predicted throughput to select the next chunk’s bitrate
and makes an HTTP request for the corresponding chunk
to the SERVER. (iv) One-shot Scheduling: Upon receiving the
CLIENT’s chunk request, the SERVER schedules packets of
the entire HTTP response (chunk), assigning them across all
paths at one time and then starting the chunk transmission.

Chorus’s server asynchronously informs the client of the
scheduling decision before it actually conducts the schedul-
ing. While this design saves an RTT for the client to proac-
tively inquire, it may introduce a bias between the client’s re-
ceived information and the server’s actual scheduling. How-
ever, evaluations in §5.3 confirm that this bias is negligible.

3.3.1 One-shot Packet Scheduling. In the CD phase, Chorus
first conducts one-shot packet scheduling on the server side
for the entire video chunk before transmission.

𝛼 =
𝐵𝑓

𝐵𝑓 + 𝐵𝑠
. (3)

Principle. The one-shot scheduling aims to achieve si-
multaneous completion on all paths, thereby minimizing
the total transmission time for each video chunk. Given
that the packet transmission order does not affect the chunk
performance (§2.3), it is only important to determine the
assignment ratio in Eq. 2. Specifically, Chorus assigns 𝛼 of
packets at the beginning and 1−𝛼 of packets at the ending of
a chunk to the fast and slow paths, respectively1. This assign-
ment is performed only once per chunk and is not limited by
CWND. Let 𝐵𝑓 and 𝐵𝑠 denote the average bandwidths of the

1In Chorus, the fast path refers to the path with higher bandwidth, not
lower RTT. Additionally, this assignment order is not necessary as long as
the assignment ratio 𝛼/(1 − 𝛼) is met; it just facilitates implementation.

fast and slow paths during chunk transmission, respectively.
It is evident that 𝐶𝑘 in Eq. 2 (as well as 𝐷𝑘 in Eq. 1) can be
optimized if and only if Eq. 3 is satisfied.
Practice. Chorus predicts 𝐵𝑓 and 𝐵𝑠 in Eq. 3 based on

information from congestion control algorithms (CCAs) in
the transport layer. For instance, BBR [13] maintains the
predicted bandwidth of each path, while for Cubic [31] and
other algorithms, the prediction can be calculated by divid-
ing CWND by the smoothed RTT. The predicted bandwidth
is further smoothed by EWMA to increase robustness. Addi-
tionally, to schedule packets of the entire chunk, Chorus is
aware of the spatial and temporal boundary of each chunk
(akin to [30]) using cross-layer APIs on the server side.

Note that Chorus does not expect this one-shot scheduling
to be perfect during the transmission of the entire chunk due
to possible network changes and invokes the subsequent FC
phase (§3.4) to correct it if necessary.

3.3.2 Throughput Prediction for ABR Algorithms. Based on
the one-shot scheduling decision information, Chorus aims
to provide better multipath throughput prediction for exist-
ing ABR algorithms on the client side.

Principle. Ideally, assuming that two paths complete the
transmission simultaneously, the predicted chunk through-
put 𝐶𝑘 is directly derived from Eq. 2 where Eq. 3 holds, cal-
culated as:

𝐶𝑘 =
𝐵̂𝑓

𝛼
=

𝐵̂𝑠

1 − 𝛼 , (4)

where 𝐵̂𝑓 and 𝐵̂𝑠 are predicted bandwidths of fast and slow
paths, respectively, and 𝛼 is given by the server’s QoE frames.

Practice: A simple yet effective predictor.Although Eq.
4 is straightforward, its accuracy highly relies on whether its
certain assumptions hold: (i) 𝛼 should be optimal to complete
the transmission on all paths simultaneously and (ii) 𝐵̂𝑓 and
𝐵̂𝑠 should be accurate. However, as illustrated in §3.3.1, Cho-
rus does not guarantee assumption (i) holds under dynamic
conditions. Additionally, past works have pointed out that
the instant predicted bandwidth from the transport layer
(e.g., the sending rate used in one-shot scheduling) tends to
overestimate the link capacity and thus not suitable for di-
rectly used in the application decisions [13, 82, 90, 99], which
can invalidate assumption (ii).
To make it practical for ABR algorithms, Chorus relaxes

assumption (i) by using Eq. 2 to calculate predictions instead
of Eq. 4. In addition, Chorus uses the local receiving rate (𝑅𝐵)
of paths to predict their bandwidth rather than the server
sending rate, thereby getting closer to assumption (ii). These
factors are incorporated into the following equation:

𝐶𝑘 = min{
𝑅𝐵𝑓

𝛼
,
𝑅𝐵𝑠

1 − 𝛼 } , (5)

where 𝑅𝐵 𝑓 and 𝑅𝐵𝑠 are the receiving rate predictions of the
fast and slow paths, respectively. 𝑅𝐵 of a path is calculated

251

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

by dividing the bytes of each downloaded chunk received on
that path by the chunk transmission time. Chorus uses the
harmonic mean (HM) of the past five samples of𝑅𝐵 to predict
𝑅𝐵, which is common in existing ABR algorithms [37, 95].
Although this prediction method2 is simple, effective, and
practical, we acknowledge that it is not a flawless solution
and discuss potential enhancements in §6.

Comparedwith other predictionmethods.To evaluate
the performance of our proposed predictor (denoted as Recv
Rate), we carried out a controlled emulation experiment (§5.1)
and compared it to four other methods. (i) HM : the harmonic
mean commonly used in single-path ABR algorithms [37, 95];
(ii) RobustHM: HM with error rate normalization proposed
in RobustMPC [95] to provide conservative predictions; (iii)
Send Rate: predicting throughput by Eq. 4 based on the latest
sending rate (informed by the server); (iv) Send Rate HM, the
HM-smoothed Send Rate. The results are shown in Fig. 5.
Fig. 5a shows that Recv Rate achieves the best average

QoE performance, with 11.3%∼58.5% improvements over oth-
ers. In Fig. 5b, although Recv Rate is the most accurate, it
only reduces 2.6% error rate compared to HM, while brings
significant increase (26.1%) in QoE. To investigate this obser-
vation, we further introduce the overestimation ratio, which
measures the chance of a predictor overestimating the ac-
tual chunk throughput. Fig. 5b shows that Recv Rate is more
conservative, with a lower overestimation ratio than other
predictors except for RobustHM.
To summarize, Recv Rate is accurate because it can de-

tect and timely react to underlying network or scheduling
changes on paths, evidenced by the case in Fig. 2b; it is also
relatively conservative because it relaxes assumption (i) in
Eq. 4. While previous works have been devoted to achiev-
ing absolutely accurate predictions in adaptive streaming
[50, 56, 79, 89, 90, 100], these results bring a novel insight:

Insight 1: Accurate but relatively conservative predic-
tions assist ABR algorithms in optimizing QoE under
dynamic conditions.
Conservative predictions help avoid severe rebuffering

events that significantly impact QoE [57, 96] under dynamic
networks. However, the comparison with RobustHM indi-
cates that being too conservative may miss the chance of
increasing bitrates, and thus not maximize QoE, which sug-
gests that the predictor should not sacrifice accuracy.
3.4 Fine-grained Corrections (FC)
During the transmission of each chunk, Chorus enters the FC
phase to cope with the possibility that the one-shot decision
made in the CD phase is non-optimal due to prediction error.

2In practice, when packets are barely assigned to the slow path and 𝑅𝐵𝑠 ≈ 0,
𝐶𝑘 may be abnormally small. To avoid this issue, the predicted throughput
can be further limited as𝐶𝑘 ≥ max{𝑅𝐵𝑓 , 𝑅𝐵𝑠 }, indicating Chorus can pro-
vide aggregated throughput no less than the best single path’s bandwidth.

In the FC phase, Chorus needs to provide adequate transport
performance by limited but effective corrections.
To this end, Chorus conducts two-stage corrections in the

FC phase, as illustrated in Fig. 6 and Alg. 1. The 1st stage
begins with the chunk transmission. In this stage, Chorus
aims to fully utilize the bandwidth of all paths under dynamic
conditions by the Sedate Rescheduling (§3.4.1, lines 2-9
in Alg. 1). When the transmission time exceeds a deadline
base on ABR logic’s expected time (lines 10-13 in Alg. 1),
Chorus enters the 2nd stage. During the last RTT of the chunk
transmission (when all packets are sent), Chorus conducts
the Expected-time-oriented Reinjection (§3.4.2, lines 14-
18 in Alg. 1) for inflight packets to accelerate the transmission
on the premise of minimizing traffic redundancy.
Our exhaustive evaluations in §5.3 show the designs of

Fine-grained Corrections assist Chorus in optimizing QoE
with infrequent rescheduling and limited reinjection.

3.4.1 1st stage: Sedate Rescheduling. The 1st-stage correc-
tion involves only Sedate Rescheduling, which is activated
by the following event: when one path has extra CWND
available to send more packets (i.e., no assigned but unsent
packets left), while another path still has unsent packets
beyond its current CWND (lines 2-5 in Alg. 1), indicating
that the total bandwidth is underutilized. In this case, Cho-
rus retrieves all unsent packets from the respective paths
and reschedules them based on the latest bandwidth. Cho-
rus recognizes that frequently adjusting scheduling decisions
is unnecessary when no CWND is available across all paths.
Therefore, Chorus refrains from immediate reactions to path-
specific network changes during chunk transmission.
Chorus conducts Sedate Rescheduling in the same way

as one-shot scheduling (§3.3.1), only with a difference in
calculating the new assignment ratio. This difference arises
from inflight packets on the path requiring one RTT to be ac-
knowledged. Consequently, Chorus must consider the path’s
RTT in rescheduling and calculate the assignment ratio 𝛼 by
solving the following equation:

𝛼𝑆𝑢

𝐵𝑓
+ 𝑅𝑇𝑇𝑓 =

(1 − 𝛼)𝑆𝑢
𝐵𝑠

+ 𝑅𝑇𝑇𝑠 , (6)

where 𝑆𝑢 indicates the size of unsent data of the chunk, 𝑅𝑇𝑇𝑓
and 𝑅𝑇𝑇𝑠 are RTT of the fast (with higher bandwidth, not
shorter RTT) and slow paths, respectively. Note that the
fast and slow paths are re-identified according to the latest
bandwidth measure. Given 0 ≤ 𝛼 ≤ 1 , Eq. 6 is solved as:

𝛼 = 𝑐𝑙𝑖𝑝 [
𝐵𝑓

𝐵𝑓 + 𝐵𝑠
+
𝐵𝑓 ∗ 𝐵𝑠 ∗ (𝑅𝑇𝑇𝑠 − 𝑅𝑇𝑇𝑓)

𝑆𝑢 ∗ (𝐵𝑓 + 𝐵𝑠)
, 0, 1] , (7)

where 𝑐𝑙𝑖𝑝 [𝑥, 0, 1] means limiting 𝑥 to [0, 1]. In most cases,
Sedate Rescheduling will not be triggered frequently, with
only several or a dozen times in a chunk (§5.3). Note that if
the 𝑅𝑇𝑇𝑓 is much longer than 𝑅𝑇𝑇𝑠 or 𝑆𝑢 is too small, where
Eq. 6 has 𝛼 < 0 or 𝛼 > 1, two paths may not complete

252

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

QoE Bitrate Rebuff. Time
(a) QoE Metrics

0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
vg

.

0.50

0.81

0.15

0.40

0.80

0.22

0.45

0.78

0.18
0.32

0.81

0.24
0.35

0.82

0.22

Error Rate Overest. Ratio
(b) Prediction Metrics

0%

20%

40%

60%

0.30

0.16

0.30
0.410.39

0.06

0.40

0.51

0.33
0.38

Recv Rate HM RobustHM Send Rate Send Rate HM

Figure 5: Performance comparison between the proposed predictor (Recv
Rate) vs. others. QoE metrics are normalized by decimal scaling.

𝛽 ∗	Exp Time Last RTT

Sedate
Rescheduling

Exp-time-oriented
Reinjection

1st Stage 2nd Stage

Exp Time0
Trans. Time

Figure 6: Timeline of Chorus during the Fine-
grained Corrections (FC) phase.

Algorithm 1: Two-stage Corrections in FC
Input : enable_renj: if enabling reinjection; 𝐷̂𝑘 : player’s predicted

transmission time of chunk 𝑘 ; 𝑃𝑓 : the fast path; 𝑃𝑠 : the slow path;
𝑇𝑠 : the time when server receives the request

1 begin
// 1. Sedate Rescheduling in both the 1st and 2nd stages

2 𝑒𝑥𝑡𝑟𝑎_𝑐𝑤𝑛𝑑𝑓 ←− 𝑃𝑓 .cwnd − 𝑃𝑓 .inflight − 𝑃𝑓 .unsent
3 𝑒𝑥𝑡𝑟𝑎_𝑐𝑤𝑛𝑑𝑠 ←− 𝑃𝑠 .cwnd − 𝑃𝑠 .inflight − 𝑃𝑓 .unsent
4 𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑐ℎ𝑒 ←− XOR (𝑒𝑥𝑡𝑟𝑎_𝑐𝑤𝑛𝑑𝑓 > 0 == True,

𝑒𝑥𝑡𝑟𝑎_𝑐𝑤𝑛𝑑𝑠 > 0 == True)
5 if 𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑐ℎ𝑒 then
6 all_unsent_pkts←− retrieve_unsent_pkts (𝑃𝑓 , 𝑃𝑠)

// calculate the ratio using Equation (7)

7 𝛼 ←− calc_resched_ratio (all_unsent_pkts, 𝑃𝑓 , 𝑃𝑠)
8 sched_pkts (𝑃𝑓 , all_unsent_pkts, 𝛼)
9 sched_pkts (𝑃𝑠 , all_unsent_pkts, 1 − 𝛼)

// 2. Expected-time-oriented Reinjection in the 2nd stage

10 if enable_renj == False then
// calculate 𝐸𝑘 using Equation (10)

11 exp_time←− calc_exp_time (𝐷̂𝑘 , 𝑃𝑓 , 𝑃𝑠)
12 if now () -𝑇𝑠 >= exp_time then
13 enable_renj←− True
14 if enable_renj == True then

// reinject inflight on another path if CWND allows

15 if !𝑃𝑓 .unsent then
16 reinject (𝑃𝑠 .inflight, 𝑃𝑓)
17 if !𝑃𝑠 .unsent then
18 reinject (𝑃𝑓 .inflight, 𝑃𝑠)

the transmission simultaneously. To cope with these cases,
Chorus further conducts reinjection in the 2nd stage.

3.4.2 2nd stage: Expected-time-oriented Reinjection. The 2nd-
stage correction involves Expected-time-oriented Reinjec-
tion to accelerate transmission in the last RTT, to meet the
needs of ABR algorithms. Recalling §2.1, the state-of-the-
art ABR logic can be formulated by the following equation
[52, 95]:

𝑅𝑘 = argmax
𝑟𝑚 ,1≤𝑚≤𝑀

𝐾∑︁
𝑘=1

ˆ𝑄𝑜𝐸 (𝑅𝑘 |𝑟𝑚), (8)

where 𝐾 denotes total number of chunks in a session, 𝑀
denotes total number of bitrate levels, 𝑟𝑚 denotes the bitrate
of level𝑚, and 𝑅𝑘 |𝑟𝑚 indicate selecting bitrate 𝑟𝑚 for chunk
𝑘 . Considering Eq. 11, the predicted QoE (ˆ𝑄𝑜𝐸) is as follows:

ˆ𝑄𝑜𝐸 (𝑅𝑘) = 𝑅𝑘 − max(𝜇 (𝐷̂𝑘 − 𝐿𝑘), 0) − 𝜆 |𝑅𝑘 − 𝑅𝑘−1 |, (9)

where 𝑘 ≥ 2, 𝐷̂𝑘 is the predicted transmission time, 𝐿𝑘 is the
buffer level when requesting chunk 𝑘 , and the middle item
indicates rebuffering time. Eq. 8 and Eq. 9 indicate that ABR

logic essentially relies on predicted transmission time. There-
fore, ABR algorithms need transmission time not to exceed
their expectations as a necessary condition to optimize QoE.
This observation further leads to the following insight:

Insight 2: Controlling reinjection based on the ex-
pected time of ABR algorithms is an essential way to
optimize QoE for adaptive streaming.
Previous works control reinjection based on various fac-

tors, such as probability [66], specific threshold [30], confi-
dence interval [42], or player’s buffer level [98]. In contrast,
Chorus conducts Expected-time-oriented Reinjection, which
is effective and directly satisfies QoE requirements of ABR
algorithms. Specifically, Chorus’s server sets a deadline (𝐸𝑘)
during the FC phase based on the expected time, calculated
as:

𝐸𝑘 = 𝛽 ∗ 𝐷̂𝑘 − (𝛼 ∗ 𝑅𝑇𝑇𝑓 + (1 − 𝛼) ∗ 𝑅𝑇𝑇𝑠) , (10)

where 𝛽 is an adjustment parameter that is set to 0.9 (see
§5.4), and the last item indicates the average RTT between
the client and the server. Recalling that 𝐷̂𝑘 is given by the
client via a QoE frame before requesting chunk 𝑘 (§3.3).

During transmitting each chunk, Chorus records the trans-
mission time on the server side and checks if it exceeds 𝐸𝑘 . If
so, Chorus enters the 2nd stage and reinjects inflight packets
in the last RTT of the transmission, by checking if all packets
are sent and at least one path has available CWND.

4 Implementation and Deployment
Chorus is implemented with ∼1000 lines of C code based
on the multipath version of XQUIC [2], a user-space QUIC
library. As the bottleneck in mobile networks typically oc-
curs in the last mile [30, 42, 54, 98], multiple paths usually do
not share the same bottleneck link. Therefore, Chorus uses
decoupled CCA for each path, following [30, 32, 98]. Specif-
ically, Chorus employs Cubic [31] (with slow-start-restart
disabled [8, 52]), the default CCA of the Linux kernel. The
choice of CCA is discussed in §5.4.
Emulation testbed. To evaluate Chorus in emulation,

we build a testbed including a simple server application and
a virtual client video player based on XQUIC [2]. Since our
focus is solely on network conditions and the requesting
behavior of video streaming in the emulation, we implement
the ABR logic and the chunk request logic (as in dash.js [69])

253

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

but leave out the actual decoding and rendering process. We
use Mahimahi [58] and its multipath version mpshell [55] to
replay the traces collected in mobile networks (§5.1).
Deployment in the real world. We build a real-world

platform to evaluate Chorus in the wild mobile Internet, in-
cluding both the server and the mobile client player. Since
Chorus is based on user space QUIC protocol, it is easy to
integrate into applications. The server runs Tengine Web
Server [73] with Chorus deployed (with only 49 lines mod-
ification of C Code), hosting video chunks. For the client,
Chorus is integrated into MediaPlayer-Extended [16], an An-
droid DASH [39] video player. MediaPlayer-Extended uses
the OkHttp library (TCP-based) for HTTP requests, which
is seamlessly replaced by TekiXquic [93], an XQUIC-based
HTTP library. As per [32, 46], the WiFi link is selected as the
primary path by default in Android. Finally, one 4G and two
5G Android smartphones are used to run the player APP.

5 Evaluation
This section thoroughly evaluates Chorus in both emulation
and real-world mobile Internet.
5.1 Setup
Video sources. Big Buck Bunny [12] is used as the source
video to evaluate various algorithms in both emulation and
real-worldmobile Internet. Following YouTube recommended
encoding settings [68], the video is encoded at bitrates [1, 2.5,
5, 8, 16] Mbps with H.264/MPEG-4 codec by FFmpeg [24],
corresponding to resolutions [360p, 480p, 720p, 1080p, 1440p
(2K)]. At each bitrate level, the video is split into 4-second
duration chunks by Bento4 [5]. Other videos, including Ele-
phants Dream [21] and Sintel [75], are also evaluated in §5.4.
The standard deviation of the highest bitrate chunk sizes of
these three videos is 2756, 4276, and 3597 (KB), respectively.

Baselines. Since Chorus can be used with any ABR algo-
rithms with throughput prediction, the representative one
named MPC [95] is chosen, which uses harmonic mean (HM)
as the predictor3. MPC is implemented in both the emulation
testbed and the real-world video system (§4). Four QUIC-
based transport schemes for MPC are considered as base-
lines, including three multipath schemes and one single-path
scheme: (i) MinRTT [66]: is the basic scheduler in MPQUIC,
which selects the path with the shortest RTT. (ii) XLINK [98]:
is the state-of-the-art QoE-driven MPQUIC scheduler, which
utilizes MinRTT in scheduling and controlling reinjection
based on the player’s buffer level. (iii) MinRTT+RI : repre-
sents the best transport performance of MinRTT and XLINK
by conducting unlimited reinjection in the last RTT. (iv) SP :
is the single path QUIC. We implemented XLINK using its

3Other predictors have also been evaluated (results omitted due to limited
space). The sum of paths’ receiving rate for multipath schemes yields similar
QoE to HM, while RobustHM performs worse than HM for all baselines.

original codes and set its double thresholds for the player’s
buffer level according to the recommendations in XLINK’s
paper, i.e., (95, 80) percentile of the buffer level distribution,
which corresponds to (0.2s, 3.7s) in our case. Note that the
only difference between MinRTT, XLINK, and MinRTT+RI
is reinjection. Other mechanisms of XLINK are enabled as
default for all these multipath baselines.
Performance metrics. Following [1, 34, 52, 95], we use

the typical form in evaluating the QoE of video streaming,
defined as the following equation:

𝑄𝑜𝐸 =

𝐾∑︁
𝑘=1

𝑅𝑘 − 𝜇

𝐾∑︁
𝑘=1

𝑇𝑘 − 𝜆

𝐾−1∑︁
𝑘=1
|𝑅𝑘+1 − 𝑅𝑘 | , (11)

where the three items represent video quality, rebuffering
time (𝑇𝑘 , in second), and smoothness of quality switch in a
session, respectively. 𝐾 is the total number of chunks in that
session, and 𝑅𝑘 is the bitrate (in Mbps) of chunk 𝑘 . 𝜇 and 𝜆
are coefficients, set to the highest bitrate (16 in our case) and
1.0, respectively, following previous works [1, 34, 52]. In our
emulation, the upper-bound session QoE is 1328, indicating
83 chunks transmitted at 16 Mbps with zero rebuffering.

Network traces.We collected 52 traces by saturatr [86] in
mobile networks, including 47 cellular and 5WiFi traces, with
the average bandwidth matching the bitrate range of 1∼16
Mbps to ensure non-trivial bitrate selection [52]. Half of the
traces were collected in stationary scenarios (e.g., outdoors,
at home, or in the office), while others were collected during
movement (e.g., walking, driving a car, or on high-speed
rails). Each trace’s uplink and downlink bandwidth were
recorded, as well as the RTT and loss rate (via ping).

When replaying these traces in the emulation testbed (§4),
we set the RTT and loss rate of a link (including uplink and
downlink) according to its original records and set the buffer
size of the link as 3×BDP. Other buffer settings are evaluated
in §5.4. We randomly select two traces from the 52 available
to create a combination of two paths, resulting in 26 tests,
each containing a 5-minute video session. For SP, we take its
higher QoE on the two paths as its performance. Fig. 7 depicts
the individual and total downlink bandwidth of paths in each
test. In 10 out of 26 tests, the total bandwidth of paths cannot
support delivering video at the constant highest bitrate.
5.2 Trace-driven Evaluation
We begin by evaluating howChorus performs in assisting the
existing ABR logic compared to baselines in the emulation.
QoE performance. The QoE of Chorus and baseline

schemes in the emulation are shown in Fig. 8a. Results demon-
strate that Chorus successfully assists MPC in optimizing
QoE. Compared to XLINK, MinRTT+RI, MinRTT and SP,
Chorus improves the average QoE by 23.5%, 21.1%, 247.3%
and 93%, respectively. In particular, Chorus achieves QoE
improvement with respect to XLINK in 73.1% of all sessions
(not shown due to space limitation). Regarding underlying

254

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

0

10

20

30

Ba
nd

w
id

th
 (M

bp
s)

Path1 Path2 Max Bitrate

Figure 7: Average downlink
bandwidth in each test.

QoE Bitrate Rebuff. Time
(a) QoE Performance

0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
vg

.

Err. Rate Overest. Ratio
(b) Prediction Performance

0

0.2

0.4

0.6

Throughput Loss Rate Reinj. Ratio
(c) Transport Performance

0

0.2

0.4

0.6

0.8
Chorus
XLINK
MinRTT+RI
MinRTT
SP

Figure 8: Overall performance of Chorus vs. baselines in emulation (with 95% confidence).

0% 10% 20% 30%
Reinjection Ratio

0
0.2
0.4
0.6
0.8

1

CD
F

of
 C

hu
nk

s

Chorus
XLINK
MinRTT+RI

 Better

Figure 9: Reinjection ra-
tio of each chunk.

24 34 44 54 64 74 84
Timestamp (s)

0
5

10
15
20

Th
ro

ug
hp

ut
 o

r
Bi

tra
te

 (M
bp

s)

0
1
2
3
4

Re
bu

ffe
rin

g
Ti

m
e

(s
)

Real Thrpt Pred. Thrpt Bitrate Rebuff. Time

(a) A case of Chorus-based MPC

Bitrate Rebuff. Time
QoE Performance

0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
vg

.

Err. Rate Overest. Ratio
Prediction Performance

Chorus XLINK MinRTT MinRTT+RI SP

(b) QoE and prediction metrics (with 95% confidence)
Figure 10: Chorus vs. baselines under the weak scenario in emulation.

0 200 400 600

No FC
Only RI-U
Only RI-E

Only RS
RS + RI-U
RS + RI-E

(a) QoE Sum
0 4 8 12

No FC
Only RI-U
Only RI-E

Only RS
RS + RI-U
RS + RI-E

(b) Throughput (Mbps)
Figure 11: Ablation study of Chorus’s FC design.

0% 2% 4% 6% 8% 10%
0

0.2
0.4
0.6
0.8

1
CD

F
of

 C
hu

nk
s

Figure 12: Chorus’s
asynchronous bias rate.

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1

CD
F

of
 C

hu
nk

s

Fixed BW
Varying BW

Figure 13: Chorus’s
rescheduling count.

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

CD
F

of
 C

hu
nk

s

Trans. Time
Proc. Time

Figure 14: Chorus’s
chunk processing time.

QoE metrics, Chorus delivers 0.9%∼9.27% higher bitrates
than other multipath schemes and 25.6% more than SP on
average. Meanwhile, Chorus reduces the average rebuffering
time by 19.5%∼55.7% compared to all baselines.
Prediction performance. Fig. 8b investigates Chorus’s

prediction performance. As shown, Chorus provides themost
accurate predictions of all multipath schemes, with the low-
est overestimation ratio. These results are consistent with
the insight in designing Chorus (§3.3.2) and suggest that
Chorus enhances multipath throughput predictions for the
ABR algorithm, accounting for the lowest rebuffering time
and highest overall QoE. This observation demonstrates that
Chorus has successfully realized its first goal of ensuring ap-
propriate bitrate selection for ABR algorithms.
Transport performance. Even though Chorus targets

adequate rather than optimal transport performance, Fig.
8c shows that Chorus achieves the same transport perfor-
mance as MinRTT+RI, which is the upper bound of XLINK
and MinRTT’s performance. Compared to XLINK, Chorus
slightly improves throughput (3.7%) and effectively reduces
the loss rate (17.4%) with fewer reinjection packets. These
improvements are mainly attributed to Chorus’s out-of-order
sending for in-order arrival scheduling, showing that Chorus
has reached its second goal of satisfying the needs of ABR logic.

Reinjection control. Chorus’ innovative reinjection con-
trol and that of the state-of-the-art scheme XLINK are evalu-
ated, as shown in Fig. 8c. Chorus reinjects 28.6% and 76.6%
fewer packets while improving QoE over XLINK and Min-
RTT+RI, respectively. Fig. 9 further illustrates that Chorus
significantly reduces the reinjection ratio at the tail, with a

34.1% and a 59.1% reduction at the 95th and 99th percentile
relative to XLINK, respectively. These results suggest that
Chorus’s expected-time-oriented scheme is more effective than
XLINK’s buffer-based scheme in adaptive streaming.
Behavior under the weak scenario. Fig. 10a demon-

strates the superiority of Chorus over baselines in the weak
scenario4, the same as that of the case study in Fig. 1. Specif-
ically, Chorus predicts throughput quite accurately in times-
lots 42-80, with only a 9.6% average error rate. Benefiting
from this, Chorus successfully avoids rebuffering events and
achieves the highest QoE with an 8.68% and 36.9% improve-
ment over SP and MinRTT+RI, respectively. In fact, in the 10
tests where two paths’ total average bandwidth is below the
highest bitrate (Fig. 7), Chorus outperforms all baselines in
bitrate, rebuffering time, and prediction error rate (Fig. 10b).
5.3 Chorus Deep Dive
In this part, controlled experiments are conducted to assess
how individual designs of Chorus affect performance.

Ablation study of FC.We evaluate the impact of Chorus’
FC phase including Sedate Rescheduling (RS) and Expected-
time-oriented Reinjection (RI-E), using Unlimited reinjection
(RI-U) for reference. Results in Fig. 11a show that the complete
FC design (RS + RI-E) is vital for Chorus to optimize QoE in
mobile networks. Specifically, disabling RS and RI-E reduces
QoE by 65.2% and 34.4%, respectively. When FC is completely
disabled (No FC), QoE nearly drops to 0 due to significant
rebuffering. Similar trends appear in other metrics, such as
chunk throughput (Fig. 11b), bitrate, rebuffering time, and

4XLINK achieves lower QoE than MinRTT+RI in this scenario, not shown.

255

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

error rate. In addition, RI-E achieves comparable QoE per-
formance to RI-U (within 2% difference), with 59.5%∼62.5%
fewer reinjected packets, highlighting the efficiency of Cho-
rus’s reinjection control.

Asynchronous scheduling bias. In the CD phase, Cho-
rus’s server informs the client before its one-shot scheduling,
potentially introducing bias due to network dynamics. Fig.
12 evaluates this, showing the relative change rate of the
path ratio between the client-received information and the
server’s eventual scheduling decision. The results indicate
that this bias is negligible, with a mean of 0.6% and a median
of merely 0.1%. For 85.6% of the chunks, the bias is under 1%.
Rescheduling frequency. Chorus conducts reschedul-

ing only when necessary. Fig. 13 shows that rescheduling is
infrequent, even under varying bandwidths (our collected
traces), with a mean and median value of 9.3 and 5, respec-
tively. The count is less than 20 in 90.1% chunks. Additional
results under fixed bandwidth (3 different bandwidth combi-
nations and 3 different RTT combinations, generating 9 tests)
suggest that rescheduling is mainly (about 60%) caused by
inaccurate bandwidth predictions of the CCA (Cubic), which
is further discussed in §5.4.
Path ratio in prediction. To investigate the effect of

scheduling information (i.e., path ratio) onmultipath through-
put prediction, we evaluate Chorus using an alternative pre-
dictor that simply sums the receiving rates of the two paths,
representing the aggregated bandwidth. The results (omit-
ted) indicate that the path ratio information is necessary for
achieving better throughput prediction. Specifically, Cho-
rus’s original predictor outperforms the alternative one by
achieving 11.6% higher QoE, with similar bitrates (within 1%
difference) and 19.8% lower rebuffering time.

Computational overhead. Chorus is a lightweight user-
apace framework, introducing negligible computational over-
head when integrated into mobile applications. Tests on a
Ubuntu 14.04 virtual machine show that Chorus server’s av-
erage processing time for each chunk is 172ms, accounting
for only 4.5% of the average chunk transmission time (3.9s),
as presented in Fig. 14. Additionally, within the total process-
ing time per chunk, approximately 40.8% is spent on packet
transmission, including activities like interacting with the
application and invoking the kernel UDP socket APIs.
5.4 Sensitivity Analysis
We in this part test the sensitivity of Chorus performance to
different experimental environments and parameter settings.

Link buffer size.We utilized a 3xBDP link buffer in our
main emulation evaluations (§5.2 and §5.3). Here, we further
evaluated Chorus using a range of buffer sizes, spanning
from shallow (1xBDP) to deep (10xBDP). The results in Fig.
15a show that the QoE performance of all schemes degrades
under a 1xBDP buffer, but stabilizes as the buffer size exceeds

2xBDP. Notably, the buffer size does not impact the relative
performance difference between these schemes. Specifically,
even compared to XLINK’s optimal performance (5xBDP),
Chorus still achieves a 15.3% improvement in QoE. These
results substantiate the consistent performance advantage
of Chorus across different buffer sizes.
Congestion control algorithm (CCA). We observed

that when paired with BBR, Chorus consistently performs
worse than with Cubic (when the link buffer size is larger
than 2xBDP), exhibiting a QoE degradation of 6.4% to 11.2%,
as illustrated in Fig. 15. The root cause is that multipath
scheduling confuses BBR’s app_limited check logic [14], re-
sulting in inaccurate link bandwidth prediction. In contrast,
other MinRTT-based baselines rely solely on RTT, without
incorporating BBR’s prediction. As a result, their perfor-
mance remains similar regardless of whether Cubic or BBR
is used as the CCA when the link buffer size exceeds 2xBDP.
While using alternative CCAs such as Copa [3] for Chorus
may yield better performance, exploring these options falls
beyond the scope of this paper.
Source video. We include two additional open-source

videos used in previous studies [50, 63, 80] for comparison:
Elephants Dreams (ED) [21] and Sintel [75]. These videos are
encoded in the same way as BBB but have different chunk
size distributions (§5.1). Fig. 16 shows that BBB and ED yield
similar results, while all schemes exhibit a 5.2%∼13.2% lower
QoE under Sintel. However, the relative performance be-
tween all schemes remains consistent across different videos.

Reinjection control parameter 𝛽 . A smaller value of 𝛽
in Eq. 10 leads to Chorus reinjecting packets earlier during
transmitting the chunk, which increases the number of rein-
jected packets. We evaluate Chorus using various values of
𝛽 , ranging from 0 to 1.2, as depicted in Fig. 17. Here, 𝛽 = 0
corresponds to RS + RI-U in Fig. 11a. It can be seen that
as 𝛽 increases from 0 to 0.9, the reinjection ratio steadily
decreases, while the QoE performance remains relatively
stable (within 2.7% difference). However, once 𝛽 exceeds 1.0,
indicating that Chorus reinjects after the chunk transmis-
sion time surpasses the expected time, the QoE performance
experiences a rapid decline. Consequently, a suitable choice
for Chorus to strike a balance between QoE improvement
and reinjection cost is 𝛽 = 0.9.
QoE frame sending period. To determine the optimal

period that Chorus server sends QoE frame, we test a range
of values in [10, 20, 50, 100, 200, 500, 1000, 2000, 3000, 4000,
6000]ms. Fig. 18 presents the QoE performance of different
period settings. When the period is less than 100ms, QoE
frames are sent too frequently. This excessive frequency
can slightly disrupt chunk transmission and reduce QoE by
2.6%∼6.9%. Specifically, given that the average chunk trans-
mission time of Chorus in the emulation is 3.9s, a 10ms
period will introduce an average of 390 QoE frames during

256

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

1x 2x 3x 5x 10x
(a) Cubic

0

200

400

600

Q
oE

1x 2x 3x 5x 10x
(b) BBR

Chorus XLINK MinRTT+RI MinRTT SP

Figure 15: QoE of all schemes under different
link buffer sizes (multiples of BDP) and CCAs.

BBB ED Sintel
Video Source

0

200

400

600

Q
oE

Chorus
XLINK

MinRTT+RI
MinRTT

SP

Figure 16: QoE of all under
different source videos.

0%1%2%3%4%5%
Reinjection Ratio

400

450

500

550

Q
oE

 Bett
er

β=0
β=0.5

β=0.6

β=0.7 β=0.8 β=0.9
β=1.0

β=1.1

β=1.2

Figure 17: Reinjection
parameter 𝛽 of Chorus.

101 102 103 104

Period (ms)

400

450

500

550

Q
oE

200ms

Figure 18: QoE sending
period of Chorus server.

transmitting each chunk. On the other hand, infrequent send-
ing of QoE frames (period greater than 2000ms) can lead to
inaccurate throughput prediction on the client and further
decrease QoE by 2.5%∼14.6%. Therefore, a period of 200ms to
1000ms is most appropriate. We choose 200ms as the period
for Chorus, in case of sudden network changes.
5.5 Real-world Evaluation
We finally evaluate Chorus on real-world mobile Internet.

Methodology.We conducted tests in three scenarios, cat-
egorized by the average bandwidth of the WiFi and cellu-
lar links: (i) Strong Scenario, where the WiFi link’s average
bandwidth surpasses the top bitrate (i.e., 16 Mbps), and all
considered schemes should be able to persistently select the
highest bitrate after the start-up phase. (ii) Medium Scenario,
where the WiFi link’s bandwidth is lower than the highest
bitrate, but the cellular link’s bandwidth is adequate. This
common real-world situation [32] highlights the advantage
of multipath schemes over SP. (iii) Weak Scenario, where
the aggregated bandwidth of both links is below the video’s
highest bitrate. This scenario often occurs with mobility or
weak wireless signal strength, thus exhibiting a high dy-
namic range of bandwidth, and is regarded as the heavy tail
of real-world mobile Internet [50, 90, 96].
Since MinRTT performs the worst and MinRTT+RI per-

forms similarly to XLINK (within 2% difference) in our em-
ulation (§5.2), we only compared Chorus with the SP and
XLINK for the convenience of collecting the dataset in the
real world. For every scenario, three schemes underwent
12 tests. Half of the tests were conducted while stationary
and the other half while walking. During the walking tests,
handovers may occur between WiFi access points or cellular
base stations. We considered various types of wireless links,
including 2.4GHz/5GHz WiFi (WiFi 4, WiFi 5, or WiFi 6) and
4G/5G cellular. Although these experiments are inherently
unrepeatable, we ran tests for each scenario several times un-
der identical conditions and timings, striving to minimize the
influence of uncontrollable factors. In total, we collected 108
real-world mobile sessions, each spanning 5 minutes. The
average chunk throughput of all schemes under the three
scenarios is 68.4 Mbps, 43.1 Mbps, and 5.5 Mbps, respectively.
Overall performance. Fig. 19 displays the overall per-

formance of all considered schemes across all scenarios in
real-world mobile Internet (with 95% confidence). The main

observations align with the results of the emulation (§5.2).
Compared to XLINK and SP, Chorus improves the total QoE
by 65.7% and 114.4% on average, respectively. Specifically,
Chorus achieves a similar bitrate sum with XLINK (18.8%
higher than SP) and the lowest rebuffering time (48.6% and
39.2% reduction over XLINK and SP, respectively). Fig. 19b
further shows that Chorus performs well in almost all tests.

Performance breakdown. A closer inspection of the re-
sults reveals that Chorus’s main improvement in QoE comes
from the weak scenario, as illustrated in Fig. 20. In both
strong andmedium scenarios, Chorus parallels XLINK’s near-
optimal QoE. Specifically, Chorus experiences no rebuffering
after the first chunk and has the shortest total rebuffering
time. Although SP maintains the highest bitrate selection
when stationary in the strong scenario, its QoE decreases
during mobility or in the medium scenario. Conversely, mul-
tipath schemes can leverage an extra link to maintain the
highest video quality. In the weak scenario, Chorus notably
outperforms XLINK and SP by reducing the rebuffering time
by 48.1% and 33.7% on average, respectively. As seen in the
emulation findings (§5.2), these gains stem from Chorus’s
enhanced throughput prediction and expected-time-oriented
transport performance while minimizing costs.

Performance in the weak scenario. The results in weak
scenarios are illustrated in Fig. 21. Note that due to high re-
buffering time, all schemes present an average negative QoE.
In most tests, XLINK performs the worst (Fig. 21a). Although
SP performs well in several tests, its performance is quite
unstable, sometimes hardly completing the test. In contrast,
Chorus provides the most stable performance in the worst cases
and achieves the best QoE on average. Fig. 21b further presents
that Chorus outperforms XLINK on transport performance,
in terms of average chunk throughput (6.9% increase), loss
rate (55.6% decrease), and reinjection ratio (10.7% decrease).
The performance issues of XLINK-based ABR originate from
two primary factors. First, XLINK introduces additional un-
certainty in chunk throughput prediction, leading to inap-
propriate (excessively high) bitrate selection, as analyzed in
§2.3. Second, XLINK lacks a comprehensive understanding
of the essential QoE requirements for adaptive streaming,
resulting in an inability to meet them while balancing costs.
These results demonstrate that Chorus excels in optimizing
the QoE of the mobile Internet, especially in the heavy tail.

257

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

QoE Bitrate Rebuff. Time
(a) QoE Performance

0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
ve

ra
ge

or
 C

D
F

of
 S

es
sio

ns

Chorus
XLINK
SP

-2000-1000 0 1000
(b) CDF of QoE

 Better

Chorus
XLINK
SP

Figure 19: Overall performance ofCho-
rus vs. baselines in the real world.

0246
Rebuffering Time (s)

950

1100

1250

Bi
tra

te
 (M

bp
s)

 Bett
er

Strong Scenario

Chorus
XLINK
SP

051015
Rebuffering Time (s)

500

750

1000

1250

 Bett
er

Medium Scenario

2060100140
Rebuffering Time (s)

100

200

300

400

 Bett
er

Weak Scenario

Figure 20: QoE performance of Chorus vs.
baselines under various scenarios.

#1 #2 #3 #4 #5 #6 #7 #8 #9#10#11#12
(a) QoE of Each Test

-4000

-3000

-2000

-1000

0

Se
ss

io
n

Q
oE

Chorus XLINK SP

Thrupt. Loss Reinj.
(b) Transport Performance

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
vg

.

Chorus
XLINK

Figure 21: Performance of Chorus vs. base-
lines under real-world weak scenarios.

6 Limitations and Discussion
Better throughput prediction. While Chorus achieves
outstanding QoE based on a simple predictor, its accuracy
could be further improved by data-driven methods, as done
in single-path streaming [50, 56, 79, 90]. To achieve relatively
conservative predictions, we can consider the overestimation
ratio in the loss function. This is left as future work.

Combined with other ABR algorithms.We evaluated
Chorus with MPC [95] because it is well studied [1, 27, 50,
79, 90], widely applied [18, 45, 62, 78], and easy to deploy.
Nonetheless, given that most latest ABR algorithms in VoD
rely on throughput predictions in both academic research [50,
56, 90] and industry [1, 51, 76], Chorus can be combined with
any of them as a general framework. Furthermore, Chorus’s
design also suits other HAS-based video applications, such as
live video [45, 78], 360° video [18, 62], and volumetric video
[47], by interacting with their ABR algorithms.

Other QoE metrics. Following previous works, we used
the linear QoE definition proposed in MPC [95] because it
directly corresponds to the ABR bitrate selection. Neverthe-
less, studies on QoE assessment have developed other QoE
metrics to more precisely model the subjective or objective
video quality and user perception, such as PSNR, SSIM [85],
VMAF [44], and ITU-T Rec. P.1203/1204 [64, 67]. As research
in this field is ongoing, we will investigate which metrics can
aid Chorus in enhancing real user satisfaction in the future.

Reducing cellular usage.One concern of applying multi-
path transmission is cellular data consumption. In fact, Cho-
rus is flexible enough to adapt to user preferences regarding
data usage. In the CD phase, Chorus can limit cellular usage
by assigning more packets (adjusting 𝛼 in Eq. 3) on the WiFi
link; in the FC phase, Chorus can reinject fewer packets on
the cellular link, e.g., with a probability less than one.

Extension to multiple paths. Chorus is inherently scal-
able to handle multiple paths. In scenarios with more than
two paths, Chorus can maintain and periodically update a
list of all available paths, ranking them based on the latest
bandwidth. Packet scheduling (assignment ratio) is then dy-
namically adjusted, ensuring optimal utilization of each path.
For packet reinjection, Chorus chooses the available path
(other than the packet’s original path) with the shortest RTT.
7 Related Work
Numerous works have explored multipath video streaming.
However, only a few are related to our work due to the vast

design space encompassing multipath and video streaming.
Many focus on multi-source video [11, 15] or non-transport
layer multipath [4, 60, 61]. Other MPTCP/MPQUIC-based
works either do not target HTTP-based adaptive streaming
[17, 20, 59, 88, 98, 101], or concentrate on video coding [22,
92] or multipath congestion control [97].

DEMS [30], ECF [46], MP-DASH [32], and PERM [28] are
most relevant to our work. However, DEMS and ECF solely
optimize the packet scheduler without coordinating ABR
logic. MP-DASH and PERM aim to maintain rather than opti-
mize QoE while reducing cellular usage through cross-layer
design, but their results do not include QoE improvements
over MinRTT. In detail, MP-DASH primarily uses the WiFi
link (not necessarily the best single path) for transmission,
enabling multipath only when long transmission times are
predicted. PERM employs a deep reinforcement learning
model as its client-side scheduler and ABR algorithm, which
suffers from delayed reactions to network changes [61] and
limited computational capacity of mobile devices [94], mak-
ing it challenging to deploy in practical systems.

8 Conclusion
Most previous studies on mobile multipath transmission aim
to optimize transport performance. However, this optimiza-
tion does not necessarily induce better QoE for adaptive
streaming. The root cause is that adaptive streaming is unco-
ordinated with multipath scheduling. To this end, this paper
proposes Chorus, a cross-layer coordination framework for
multipath scheduling and ABR algorithms to optimize QoE
jointly. Chorus incorporates two-way feedback control loops
and introduces Coarse-grained Decisions and Fine-grained
Corrections (CD&FC). In this way, Chorus ensures appropri-
ate bitrate selection and expected-time-oriented transport
performance for multipath adaptive streaming. Chorus is de-
signed with fewer assumptions and is practical to deploy in
mobile applications. Evaluations in emulation and real-world
mobile Internet demonstrate Chorus’s consistent superiority
in optimizing QoE, especially in the heavy tail.

Acknowledgments
We thank the anonymous shepherd and reviewers for their
constructive feedback. This work was supported in part by
the National Key R&D Program of China (2022YFB2901800)
Natural Science Foundation of China (U20A20180, 62072437),
and Beijing NSF (JQ20024).

258

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

References
[1] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jes-

sica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui
Zhang. 2018. Oboe: Auto-Tuning Video ABR Algorithms to Network
Conditions. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (Budapest, Hungary) (SIG-
COMM ’18). Association for Computing Machinery, New York, NY,
USA, 44–58. https://doi.org/10.1145/3230543.3230558

[2] alibaba/xquic. 2023. https://github.com/alibaba/xquic.
[3] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-

Based Congestion Control for the Internet. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 329–342. https://www.usenix.
org/conference/nsdi18/presentation/arun

[4] Ghufran Baig, Jian He, Mubashir Adnan Qureshi, Lili Qiu, Guohai
Chen, Peng Chen, and Yinliang Hu. 2019. Jigsaw: Robust Live 4K
Video Streaming. In The 25th Annual International Conference on
Mobile Computing and Networking (Los Cabos, Mexico) (MobiCom
’19). Association for Computing Machinery, New York, NY, USA,
Article 14, 16 pages. https://doi.org/10.1145/3300061.3300127

[5] Bento4. 2023. https://www.bento4.com/.
[6] Bilibili. 2018. Instructions on introducing DASH technology to

improve user playback experience. https://www.bilibili.com/read/
cv949156.

[7] Bitmovin. 2015. Why YouTube and Netflix use MPEG-DASH in
HTML5. https://bitmovin.com/mpeg-dash-youtube-netflix-html5/.

[8] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. 2009. TCP Con-
gestion Control. RFC 5681. https://doi.org/10.17487/RFC5681

[9] Olivier Bonaventure. 2015. Multipath TCP is pronounced GIGA Path.
http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html.

[10] Olivier Bonaventure. 2018. Apple uses Multipath TCP.
http://blog.multipath-tcp.org/blog/html/2018/12/15/apple_and_
multipath_tcp.html.

[11] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Negru,
Jordi Mongay Batalla, and Eugen Borcoci. 2017. MS-Stream:
A multiple-source adaptive streaming solution enhancing con-
sumer’s perceived quality. In 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 427–434.
https://doi.org/10.1109/CCNC.2017.7983147

[12] Big Buck Bunny. 2023. https://peach.blender.org/.
[13] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. 2016. Bbr: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip propagation
time. Queue 14, 5 (2016), 20–53.

[14] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett,
and Van Jacobson. 2022. BBR Congestion Control. Internet-Draft
draft-cardwell-iccrg-bbr-congestion-control-02. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-
congestion-control/02/ Work in Progress.

[15] Yung-Chih Chen, Don Towsley, and Ramin Khalili. 2016. MSPlayer:
Multi-source andmulti-path video streaming. IEEE Journal on Selected
Areas in Communications 34, 8 (2016), 2198–2206.

[16] MediaPlayer-Extended: Android MediaPlayer API compatible media
player library with exact seek and DASH support. 2023. https://github.
com/protyposis/MediaPlayer-Extended.

[17] Xavier Corbillon, Ramon Aparicio-Pardo, Nicolas Kuhn, Géraldine
Texier, and Gwendal Simon. 2016. Cross-Layer Scheduler for Video
Streaming over MPTCP. In Proceedings of the 7th International Con-
ference on Multimedia Systems (Klagenfurt, Austria) (MMSys ’16).
Association for Computing Machinery, New York, NY, USA, Article
7, 12 pages. https://doi.org/10.1145/2910017.2910594

[18] MalleshamDasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu,
Aruna Balasubramanian, and Samir R. Das. 2020. Streaming 360-
Degree Videos Using Super-Resolution. In IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications. IEEE, 1977–1986. https:
//doi.org/10.1109/INFOCOM41043.2020.9155477

[19] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath
QUIC: Design and Evaluation. In Proceedings of the 13th Interna-
tional Conference on Emerging Networking EXperiments and Tech-
nologies (Incheon, Republic of Korea) (CoNEXT ’17). Association
for Computing Machinery, New York, NY, USA, 160–166. https:
//doi.org/10.1145/3143361.3143370

[20] Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee, Dirk Grunwald,
and Sangtae Ha. 2023. Converge: QoE-driven Multipath Video Con-
ferencing over WebRTC. In Proceedings of the ACM SIGCOMM 2023
Conference. Association for Computing Machinery, New York, NY,
USA, 637–653.

[21] Elephants Dream. 2023. https://orange.blender.org/.
[22] Anis Elgabli, Ke Liu, and Vaneet Aggarwal. 2018. Optimized

preference-aware multi-path video streaming with scalable video
coding. IEEE Transactions on Mobile Computing 19, 1 (2018), 159–172.

[23] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana Boreli. 2016.
BLEST: Blocking estimation-based MPTCP scheduler for heteroge-
neous networks. In 2016 IFIP networking conference (IFIP networking)
and workshops. IEEE, 431–439.

[24] FFmpeg. 2023. https://www.ffmpeg.org/.
[25] Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaven-

ture. 2013. TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 6824. https://doi.org/10.17487/RFC6824

[26] Alexander Frommgen, Tobias Erbshäußer, Alejandro Buchmann,
Torsten Zimmermann, and Klaus Wehrle. 2016. ReMP TCP: Low
latency multipath TCP. In 2016 IEEE international conference on com-
munications (ICC). IEEE, 1–7.

[27] Ehab Ghabashneh and Sanjay Rao. 2020. Exploring the interplay
between CDN caching and video streaming performance. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
516–525.

[28] Yushuo Guan, Yuanxing Zhang, Bingxuan Wang, Kaigui Bian, Xiao-
liang Xiong, and Lingyang Song. 2020. PERM: Neural adaptive video
streaming with multi-path transmission. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 1103–1112.

[29] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and
Junchen Jiang. 2019. Pano: Optimizing 360° Video Streaming with
a Better Understanding of Quality Perception. In Proceedings of the
ACM Special Interest Group on Data Communication. Association
for Computing Machinery, New York, NY, USA, 394–407. https:
//doi.org/10.1145/3341302.3342063

[30] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and
Subhabrata Sen. 2017. Accelerating Multipath Transport Through
Balanced Subflow Completion. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking (Snow-
bird, Utah, USA) (MobiCom ’17). Association for Computing Machin-
ery, New York, NY, USA, 141–153. https://doi.org/10.1145/3117811.
3117829

[31] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 42, 5 (2008), 64–74.

[32] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-
DASH: Adaptive Video Streaming Over Preference-Aware Multipath.
In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies (Irvine, California, USA)
(CoNEXT ’16). Association for Computing Machinery, New York, NY,
USA, 129–143. https://doi.org/10.1145/2999572.2999606

259

https://doi.org/10.1145/3230543.3230558
https://github.com/alibaba/xquic
https://www.usenix.org/conference/nsdi18/presentation/arun
https://www.usenix.org/conference/nsdi18/presentation/arun
https://doi.org/10.1145/3300061.3300127
https://www.bento4.com/
https://www.bilibili.com/read/cv949156
https://www.bilibili.com/read/cv949156
https://bitmovin.com/mpeg-dash-youtube-netflix-html5/
https://doi.org/10.17487/RFC5681
http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html
http://blog.multipath-tcp.org/blog/html/2018/12/15/apple_and_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2018/12/15/apple_and_multipath_tcp.html
https://doi.org/10.1109/CCNC.2017.7983147
https://peach.blender.org/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://github.com/protyposis/MediaPlayer-Extended
https://github.com/protyposis/MediaPlayer-Extended
https://doi.org/10.1145/2910017.2910594
https://doi.org/10.1109/INFOCOM41043.2020.9155477
https://doi.org/10.1109/INFOCOM41043.2020.9155477
https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1145/3143361.3143370
https://orange.blender.org/
https://www.ffmpeg.org/
https://doi.org/10.17487/RFC6824
https://doi.org/10.1145/3341302.3342063
https://doi.org/10.1145/3341302.3342063
https://doi.org/10.1145/3117811.3117829
https://doi.org/10.1145/3117811.3117829
https://doi.org/10.1145/2999572.2999606

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

[33] Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, and
Lifeng Sun. 2022. Learning Tailored Adaptive Bitrate Algorithms
to Heterogeneous Network Conditions: A Domain-Specific Priors
and Meta-Reinforcement Learning Approach. IEEE Journal on Se-
lected Areas in Communications 40, 8 (2022), 2485–2503. https:
//doi.org/10.1109/JSAC.2022.3180804

[34] Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, Xin Yao,
and Lifeng Sun. 2020. Stick: A harmonious fusion of buffer-based and
learning-based approach for adaptive streaming. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 1967–1976.

[35] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2014. A Buffer-Based Approach to Rate Adapta-
tion: Evidence from a Large Video Streaming Service. In Proceedings
of the 2014 ACM Conference on SIGCOMM (Chicago, Illinois, USA)
(SIGCOMM ’14). Association for Computing Machinery, New York,
NY, USA, 187–198. https://doi.org/10.1145/2619239.2626296

[36] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. https://doi.org/10.17487/
RFC9000

[37] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Video Streaming
with FESTIVE. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (Nice, France)
(CoNEXT ’12). Association for Computing Machinery, New York, NY,
USA, 97–108. https://doi.org/10.1145/2413176.2413189

[38] Theo Karagkioules, Rufael Mekuria, Dirk Griffioen, and Arjen Wage-
naar. 2020. Online Learning for Low-Latency Adaptive Streaming. In
Proceedings of the 11th ACM Multimedia Systems Conference (Istanbul,
Turkey) (MMSys ’20). Association for Computing Machinery, New
York, NY, USA, 315–320. https://doi.org/10.1145/3339825.3397042

[39] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video Stream
Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-
Experimental Designs. In Proceedings of the 2012 Internet Measurement
Conference (Boston, Massachusetts, USA) (IMC ’12). Association for
Computing Machinery, New York, NY, USA, 211–224. https://doi.
org/10.1145/2398776.2398799

[40] Nicolas Kuhn, Emmanuel Lochin, Ahlem Mifdaoui, Golam Sarwar,
Olivier Mehani, and Roksana Boreli. 2014. DAPS: Intelligent delay-
aware packet scheduling for multipath transport. In 2014 IEEE inter-
national conference on communications (ICC). IEEE, 1222–1227.

[41] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente,
Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett,
Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna
Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. 2017. The
QUIC Transport Protocol: Design and Internet-Scale Deployment.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 183–196.
https://doi.org/10.1145/3098822.3098842

[42] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal. 2018. RAVEN:
Improving Interactive Latency for the Connected Car. In Proceedings
of the 24th Annual International Conference on Mobile Computing
and Networking (New Delhi, India) (MobiCom ’18). Association for
Computing Machinery, New York, NY, USA, 557–572. https://doi.
org/10.1145/3241539.3241571

[43] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, DanWang, Xiangxiang
Wang, Meng Shen, and Rashid Mijumbi. 2018. A Measurement Study
on Multi-Path TCP with Multiple Cellular Carriers on High Speed
Rails. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).

Association for Computing Machinery, New York, NY, USA, 161–175.
https://doi.org/10.1145/3230543.3230556

[44] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, Megha
Manohara, et al. 2016. Toward a practical perceptual video quality
metric. The Netflix Tech Blog 6, 2 (2016), 2.

[45] May Lim, Mehmet N. Akcay, Abdelhak Bentaleb, Ali C. Begen, and
Roger Zimmermann. 2020. When They Go High, We Go Low: Low-
Latency Live Streaming in Dash.Js with LoL. In Proceedings of the 11th
ACM Multimedia Systems Conference (Istanbul, Turkey) (MMSys ’20).
Association for Computing Machinery, New York, NY, USA, 321–326.
https://doi.org/10.1145/3339825.3397043

[46] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens.
2017. ECF: An MPTCP Path Scheduler to Manage Heterogeneous
Paths. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (Incheon, Republic of Ko-
rea) (CoNEXT ’17). Association for Computing Machinery, New York,
NY, USA, 147–159. https://doi.org/10.1145/3143361.3143376

[47] Yu Liu, Bo Han, Feng Qian, Arvind Narayanan, and Zhi-Li Zhang.
2022. Vues: Practical Mobile Volumetric Video Streaming through
Multiview Transcoding. In Proceedings of the 28th Annual Interna-
tional Conference onMobile Computing And Networking (Sydney, NSW,
Australia) (MobiCom ’22). Association for ComputingMachinery, New
York, NY, USA, 514–527. https://doi.org/10.1145/3495243.3517027

[48] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure,
Christian Huitema, and Mirja Kühlewind. 2023. Multipath Extension
for QUIC. Internet-Draft draft-ietf-quic-multipath-05. Internet Engi-
neering Task Force. https://datatracker.ietf.org/doc/draft-ietf-quic-
multipath/05/ Work in Progress.

[49] Yanmei Liu, Yunfei Ma, Christian Huitema, Qing An, and Zhenyu
Li. 2021. Multipath Extension for QUIC. Internet-Draft draft-
liu-multipath-quic-04. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-liu-multipath-quic/04/ Work in
Progress.

[50] Gerui Lv, Qinghua Wu, Weiran Wang, Zhenyu Li, and Gaogang Xie.
2022. Lumos: towards Better Video Streaming QoE through Accurate
Throughput Prediction. In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications. IEEE, 650–659. https://doi.org/10.1109/
INFOCOM48880.2022.9796948

[51] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun Singh, Drew
Blaisdell, Yuandong Tian, Mohammad Alizadeh, and Eytan Bakshy.
2019. Real-world video adaptation with reinforcement learning. In
ICML 2019 Workshop RL4RealLife.

[52] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neu-
ral Adaptive Video Streaming with Pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(Los Angeles, CA, USA) (SIGCOMM ’17). Association for Computing
Machinery, New York, NY, USA, 197–210. https://doi.org/10.1145/
3098822.3098843

[53] Streaming Media. 2014. Hulu: ’DASH Is Definitely the Future for
Us’. https://www.streamingmedia.com/Articles/Editorial/Featured-
Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx.

[54] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry,
Hongqiang Harry Liu, and Mingwei Xu. 2022. Achieving Consis-
tent Low Latency for Wireless Real-Time Communications with
the Shortest Control Loop. In Proceedings of the ACM SIGCOMM
2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 193–206.
https://doi.org/10.1145/3544216.3544225

[55] mpshell. 2023. https://github.com/ravinet/mahimahi/tree/old/
mpshell_scripted.

[56] Yun Seong Nam, Jianfei Gao, Chandan Bothra, Ehab Ghabashneh,
Sanjay Rao, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2022. Xatu:

260

https://doi.org/10.1109/JSAC.2022.3180804
https://doi.org/10.1109/JSAC.2022.3180804
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/3339825.3397042
https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3241539.3241571
https://doi.org/10.1145/3241539.3241571
https://doi.org/10.1145/3230543.3230556
https://doi.org/10.1145/3339825.3397043
https://doi.org/10.1145/3143361.3143376
https://doi.org/10.1145/3495243.3517027
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/05/
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/05/
https://datatracker.ietf.org/doc/draft-liu-multipath-quic/04/
https://datatracker.ietf.org/doc/draft-liu-multipath-quic/04/
https://doi.org/10.1109/INFOCOM48880.2022.9796948
https://doi.org/10.1109/INFOCOM48880.2022.9796948
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx
https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Hulu-DASH-Is-Definitely-the-Future-for-Us-97468.aspx
https://doi.org/10.1145/3544216.3544225
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted

ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA G. Lv et al.

Richer Neural Network Based Prediction for Video Streaming. SIG-
METRICS Perform. Eval. Rev. 50, 1 (jun 2022), 9–10. https://doi.org/
10.1145/3547353.3522641

[57] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan,
Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengx-
uan Yang, Zhuoqing Morley Mao, Feng Qian, and Zhi-Li Zhang.
2021. A Variegated Look at 5G in the Wild: Performance, Power,
and QoE Implications. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association
for Computing Machinery, New York, NY, USA, 610–625. https:
//doi.org/10.1145/3452296.3472923

[58] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
Accurate Record-and-Replay for HTTP. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15). USENIX Association, Santa Clara,
CA, 417–429. https://www.usenix.org/conference/atc15/technical-
session/presentation/netravali

[59] Yunzhe Ni, Zhilong Zheng, Xianshang Lin, Fengyu Gao, Xuan Zeng,
Yirui Liu, Tao Xu, Hua Wang, Zhidong Zhang, Senlang Du, et al.
2023. CellFusion: Multipath Vehicle-to-Cloud Video Streaming with
Network Coding in the Wild. In Proceedings of the ACM SIGCOMM
2023 Conference. Association for Computing Machinery, New York,
NY, USA, 668–683.

[60] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao, and Sub-
habrata Sen. 2016. An In-Depth Understanding of Multipath TCP
on Mobile Devices: Measurement and System Design. In Proceedings
of the 22nd Annual International Conference on Mobile Computing
and Networking (New York City, New York) (MobiCom ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, 189–201.
https://doi.org/10.1145/2973750.2973769

[61] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z. Morley
Mao. 2019. MP-H2: A Client-Only Multipath Solution for HTTP/2.
In The 25th Annual International Conference on Mobile Computing
and Networking (Los Cabos, Mexico) (MobiCom ’19). Association for
Computing Machinery, New York, NY, USA, Article 10, 16 pages.
https://doi.org/10.1145/3300061.3300131

[62] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Flare: Practical Viewport-Adaptive 360-Degree Video Streaming for
Mobile Devices. In Proceedings of the 24th Annual International Con-
ference on Mobile Computing and Networking (New Delhi, India) (Mo-
biCom ’18). Association for Computing Machinery, New York, NY,
USA, 99–114. https://doi.org/10.1145/3241539.3241565

[63] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen,
Bing Wang, and Chaoqun Yue. 2018. ABR Streaming of VBR-Encoded
Videos: Characterization, Challenges, and Solutions. In Proceedings of
the 14th International Conference on Emerging Networking EXperiments
and Technologies (Heraklion, Greece) (CoNEXT ’18). Association for
Computing Machinery, New York, NY, USA, 366–378. https://doi.
org/10.1145/3281411.3281439

[64] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List,
Steve Göring, and Bernhard Feiten. 2017. A bitstream-based, scalable
video-quality model for HTTP adaptive streaming: ITU-T P.1203.1.
In Ninth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE, Erfurt, 1–6. https://doi.org/10.1109/QoMEX.2017.
7965631

[65] Costin Raiciu, Mark J. Handley, and Damon Wischik. 2011. Coupled
Congestion Control for Multipath Transport Protocols. RFC 6356.
https://doi.org/10.17487/RFC6356

[66] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley.
2012. HowHard Can It Be? Designing and Implementing a Deployable

Multipath TCP. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). USENIX Association, San Jose,
CA, 399–412. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/raiciu

[67] Rakesh Rao Ramachandra Rao, Steve Göring, Peter List, Werner
Robitza, Bernhard Feiten, Ulf Wüstenhagen, and Alexander Raake.
2020. Bitstream-Based Model Standard for 4K/UHD: ITU-T P.1204.3
— Model Details, Evaluation, Analysis and Open Source Implementa-
tion. In 2020 Twelfth International Conference on Quality of Multimedia
Experience (QoMEX). 1–6. https://doi.org/10.1109/QoMEX48832.2020.
9123110

[68] YouTube recommended upload encoding settings. 2023. https://
support.google.com/youtube/answer/1722171.

[69] Dash-Industry-Forum/dash.js: A reference client implementation for
the playback of MPEG DASH via Javascript and compliant browsers.
2023. https://github.com/Dash-Industry-Forum/dash.js/.

[70] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak, Dimitrios
Koutsonikolas, and Joerg Widmer. 2019. MuSher: An Agile Multipath-
TCP Scheduler for Dual-Band 802.11ad/Ac Wireless LANs. In The
25th Annual International Conference on Mobile Computing and Net-
working (Los Cabos, Mexico) (MobiCom ’19). Association for Com-
puting Machinery, New York, NY, USA, Article 34, 16 pages. https:
//doi.org/10.1145/3300061.3345435

[71] SANDVINE. 2023. 2023 Global Internet Phenomena Report. https:
//www.sandvine.com/global-internet-phenomena-report-2023.

[72] Golam Sarwar, Roksana Boreli, Emmanuel Lochin, Ahlem Mifdaoui,
and Guillaume Smith. 2013. Mitigating receiver’s buffer blocking by
delay aware packet scheduling in multipath data transfer. In 2013
27th international conference on advanced information networking and
applications workshops. IEEE, 1119–1124.

[73] The Tengine Web Server. 2023. https://tengine.taobao.org/.
[74] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao

Wang, and Kai Zheng. 2018. STMS: Improving MPTCP Throughput
Under Heterogeneous Networks. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 719–
730. https://www.usenix.org/conference/atc18/presentation/shi

[75] Sintel. 2023. https://durian.blender.org/.
[76] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From

Theory to Practice: Improving Bitrate Adaptation in the DASH
Reference Player. In Proceedings of the 9th ACM Multimedia Sys-
tems Conference (Amsterdam, Netherlands) (MMSys ’18). Association
for Computing Machinery, New York, NY, USA, 123–137. https:
//doi.org/10.1145/3204949.3204953

[77] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016.
BOLA: Near-optimal bitrate adaptation for online videos. In IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 1–9.

[78] Liyang Sun, Tongyu Zong, Yong Liu, Yao Wang, and Haihong Zhu.
2019. Optimal strategies for live video streaming in the low-latency
regime. In 2019 IEEE 27th International Conference on Network Protocols
(ICNP). IEEE, 1–4.

[79] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nan-
shu Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving
Video Bitrate Selection and Adaptation with Data-Driven Through-
put Prediction. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). Association for Computing
Machinery, New York, NY, USA, 272–285. https://doi.org/10.1145/
2934872.2934898

[80] Christian Timmerer, Matteo Maiero, and Benjamin Rainer. 2016.
Which Adaptation Logic? An Objective and Subjective Performance
Evaluation of HTTP-based Adaptive Media Streaming Systems.
arXiv:1606.00341 [cs.MM]

261

https://doi.org/10.1145/3547353.3522641
https://doi.org/10.1145/3547353.3522641
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1145/3452296.3472923
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://doi.org/10.1145/2973750.2973769
https://doi.org/10.1145/3300061.3300131
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3281411.3281439
https://doi.org/10.1145/3281411.3281439
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.17487/RFC6356
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://doi.org/10.1109/QoMEX48832.2020.9123110
https://doi.org/10.1109/QoMEX48832.2020.9123110
https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
https://github.com/Dash-Industry-Forum/dash.js/
https://doi.org/10.1145/3300061.3345435
https://doi.org/10.1145/3300061.3345435
https://www.sandvine.com/global-internet-phenomena-report-2023
https://www.sandvine.com/global-internet-phenomena-report-2023
https://tengine.taobao.org/
https://www.usenix.org/conference/atc18/presentation/shi
https://durian.blender.org/
https://doi.org/10.1145/3204949.3204953
https://doi.org/10.1145/3204949.3204953
https://doi.org/10.1145/2934872.2934898
https://doi.org/10.1145/2934872.2934898
https://arxiv.org/abs/1606.00341

Chorus: Coordinating Mobile Multipath Scheduling and Adaptive Video Streaming ACM MobiCom ’24, Sep. 30-Oct. 4, 2024, Washington, D.C., USA

[81] Jeroen van der Hooft, Tim Wauters, Filip De Turck, Christian Tim-
merer, and Hermann Hellwagner. 2019. Towards 6DoF HTTP Adap-
tive Streaming Through Point Cloud Compression. In Proceedings of
the 27th ACM International Conference on Multimedia (Nice, France)
(MM ’19). Association for Computing Machinery, New York, NY, USA,
2405–2413. https://doi.org/10.1145/3343031.3350917

[82] Santiago Vargas, Rebecca Drucker, Aiswarya Renganathan, Aruna
Balasubramanian, and Anshul Gandhi. 2021. BBR Bufferbloat in
DASH Video. In Proceedings of the Web Conference 2021 (Ljubljana,
Slovenia) (WWW ’21). Association for Computing Machinery, New
York, NY, USA, 329–341. https://doi.org/10.1145/3442381.3450061

[83] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe,
and Ralf Steinmetz. 2018. Multipath QUIC: A deployable multipath
transport protocol. In 2018 IEEE International Conference on Commu-
nications (ICC). IEEE, 1–7.

[84] Shibo Wang, Shusen Yang, Hailiang Li, Xiaodan Zhang, Chen Zhou,
Chenren Xu, Feng Qian, Nanbin Wang, and Zongben Xu. 2022.
SalientVR: Saliency-Driven Mobile 360-Degree Video Streaming with
Gaze Information. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking (Sydney, NSW, Aus-
tralia) (MobiCom ’22). Association for Computing Machinery, New
York, NY, USA, 542–555. https://doi.org/10.1145/3495243.3517018

[85] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
2004. Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.

[86] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.
Stochastic Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). USENIX Association, Lombard,
IL, 459–471. https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/winstein

[87] Hongjia Wu, Özgü Alay, Anna Brunstrom, Simone Ferlin, and
Giuseppe Caso. 2020. Peekaboo: Learning-based multipath sched-
uling for dynamic heterogeneous environments. IEEE Journal on
Selected Areas in Communications 38, 10 (2020), 2295–2310.

[88] Jiyan Wu, Chau Yuen, Bo Cheng, Ming Wang, and Junliang Chen.
2015. Streaming high-quality mobile video with multipath TCP in
heterogeneous wireless networks. IEEE Transactions on Mobile Com-
puting 15, 9 (2015), 2345–2361.

[89] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2016.
PiStream: Physical Layer Informed Adaptive Video Streaming Over
LTE. GetMobile: Mobile Comp. and Comm. 20, 2, 31–34. https://doi.
org/10.1145/3009808.3009819

[90] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: a randomized experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, Santa Clara, CA, 495–511. https://www.
usenix.org/conference/nsdi20/presentation/yan

[91] Fan Yang, Qi Wang, and Paul D Amer. 2014. Out-of-order trans-
mission for in-order arrival scheduling for multipath TCP. In 2014
28th international conference on advanced information networking and
applications workshops. IEEE, 749–752.

[92] Wang Yang, Jing Cao, and Fan Wu. 2021. Adaptive Video Streaming
with Scalable Video Coding using Multipath QUIC. In 2021 IEEE In-
ternational Performance, Computing, and Communications Conference
(IPCCC). IEEE, 1–7.

[93] yangqingyuan/TekiXquic. 2023. https://github.com/yangqingyuan/
TekiXquic.

[94] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and
Dongsu Han. 2020. NEMO: Enabling Neural-Enhanced Video Stream-
ing on Commodity Mobile Devices. In Proceedings of the 26th An-
nual International Conference on Mobile Computing and Networking
(London, United Kingdom) (MobiCom ’20). Association for Comput-
ing Machinery, New York, NY, USA, Article 28, 14 pages. https:
//doi.org/10.1145/3372224.3419185

[95] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
Control-Theoretic Approach for Dynamic Adaptive Video Streaming
over HTTP. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (London, United Kingdom)
(SIGCOMM ’15). Association for Computing Machinery, New York,
NY, USA, 325–338. https://doi.org/10.1145/2785956.2787486

[96] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping
Wang, Xinyu Zhang, Huadong Ma, Leilei Wu, Aiyun Chen, and
Changhui Wu. 2021. Loki: Improving Long Tail Performance of
Learning-Based Real-Time Video Adaptation by Fusing Rule-Based
Models. In Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking (New Orleans, Louisiana) (Mo-
biCom ’21). Association for Computing Machinery, New York, NY,
USA, 775–788. https://doi.org/10.1145/3447993.3483259

[97] Jia Zhao, Jiangchuan Liu, Cong Zhang, Yong Cui, Yong Jiang, andWei
Gong. 2020. MPTCP+: Enhancing Adaptive HTTP Video Streaming
over Multipath. In 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS). IEEE, 1–6.

[98] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li,
Yuanbo Zhang, Jiuhai Zhang,Wei Shi,Wentao Chen, Ding Li, QingAn,
Hai Hong, Hongqiang Harry Liu, andMing Zhang. 2021. XLINK: QoE-
Driven Multi-Path QUIC Transport in Large-Scale Video Services. In
Proceedings of the 2021 ACM SIGCOMM2021 Conference (Virtual Event,
USA) (SIGCOMM ’21). Association for Computing Machinery, New
York, NY, USA, 418–432. https://doi.org/10.1145/3452296.3472893

[99] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan
Ma, Zhen Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiao-
jiang Chen. 2019. Learning to Coordinate Video Codec with Transport
Protocol for Mobile Video Telephony. In The 25th Annual International
Conference on Mobile Computing and Networking (Los Cabos, Mexico)
(MobiCom ’19). Association for Computing Machinery, New York, NY,
USA, Article 29, 16 pages. https://doi.org/10.1145/3300061.3345430

[100] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Hale-
povic, Rittwik Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha.
2015. Can Accurate Predictions Improve Video Streaming in Cellu-
lar Networks?. In Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications (Santa Fe, New Mexico,
USA) (HotMobile ’15). Association for Computing Machinery, New
York, NY, USA, 57–62. https://doi.org/10.1145/2699343.2699359

[101] Xutong Zuo, Yong Cui, Xin Wang, and Jiayu Yang. 2022. Deadline-
aware Multipath Transmission for Streaming Blocks. In IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications. IEEE,
2178–2187.

262

https://doi.org/10.1145/3343031.3350917
https://doi.org/10.1145/3442381.3450061
https://doi.org/10.1145/3495243.3517018
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://doi.org/10.1145/3009808.3009819
https://doi.org/10.1145/3009808.3009819
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://github.com/yangqingyuan/TekiXquic
https://github.com/yangqingyuan/TekiXquic
https://doi.org/10.1145/3372224.3419185
https://doi.org/10.1145/3372224.3419185
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/3447993.3483259
https://doi.org/10.1145/3452296.3472893
https://doi.org/10.1145/3300061.3345430
https://doi.org/10.1145/2699343.2699359

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Ineffective Multipath Adaptive Streaming
	2.3 Culprit: Overlooked Multipath Scheduling
	2.4 Rescue: Incorporating Scheduling Information

	3 Chorus Design
	3.1 Design Goals and Challenges
	3.2 Chorus Overview
	3.3 Coarse-grained Decisions (CD)
	3.4 Fine-grained Corrections (FC)

	4 Implementation and Deployment
	5 Evaluation
	5.1 Setup
	5.2 Trace-driven Evaluation
	5.3 Chorus Deep Dive
	5.4 Sensitivity Analysis
	5.5 Real-world Evaluation

	6 Limitations and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

