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Abstract

Mobile real-time video streaming (RTVS) demands ultra-low la-
tency to preserve content timeliness. Packet loss in mobile networks
significantly inflates frame latency and thus degrades the quality
of experience (QoE). As a promising solution, Forward Error Cor-
rection (FEC) encoding has been widely deployed in RTVS systems
to recover from packet loss by introducing redundancy. However,
existing schemes focus on per-frame FEC protection, failing to op-
timize QoE because they cannot precisely allocate redundancy to
handle burst loss events. These events typically occur at the single-
frame level, but can be smoothed out at the multi-frame level. We
propose BREATH, an adaptive FEC scheme that dynamically adjusts
the protection boundary based on network and video dynamics. We
have implemented BREATH in a RTVS system and evaluated it in
emulated mobile networks using network traces collected from the
production system. Results show that, compared to state-of-the-art
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FEC schemes, BREATH reduces deadline missing rate by 17.2%-22.5%
while improving the average video bitrate by 10.6%-14.2%.
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1 Introduction

Mobile Real-Time Video Streaming (RTVS) applications, such
as video conferencing [29], live streaming [25, 27, 51], and cloud
gaming [20, 40, 49], impose strict end-to-end (E2E) latency con-
straints (often below 150 ms [18, 30, 31, 38, 43, 52]) to maintain user
interactivity [11, 53]. However, meeting such latency requirements
is challenging because empirical studies like [15] identify packet
loss as a primary cause of latency inflation, especially in mobile net-
works [1, 12]. Existing loss recovery solutions [9, 26, 34] that rely
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on retransmissions incur a latency penalty of at least one additional
Round-Trip Time (RTT), frequently causing the retransmitted data
to arrive too late and breach the strict 150 ms deadline.

In contrast to reactive retransmission-based solutions, Forward
Error Correction (FEC) [28, 41, 48] provides a proactive mechanism
for loss recovery that eliminates the additional latency introduced
by retransmissions. By proactively generating redundant packets
from a block (i.e., protection boundary) of source media data, FEC
enables the receiver to reconstruct lost packets by using redun-
dant packets alongside the original media packets, without waiting
for sender retransmission. In modern FEC for RTVS, protection
is applied at the per-frame level. Consequently, mainstream FEC
schemes aim to carefully allocate an appropriate number of re-
dundant packets to each frame based on loss estimation, ensuring
efficient loss recovery while limiting the bandwidth wasted by
unnecessary redundancy [2, 4, 6-8, 23, 38].

Despite the above efforts, our large-scale measurements from
over 65,000 sessions on a mobile RTVS system reveal that, although
existing FEC schemes provide sufficient redundancy at the session
level, they cannot effectively protect frames against severe frame-level
loss events. Surprisingly, an additional 9.5% redundancy results in
27.6% of frames being unable to recover. The root cause is that
existing solutions fail to precisely allocate the necessary redun-
dant resources to recover from burst loss events. Even worse, these
events mostly (in about 80% of cases) occur in a single frame, rather
than continuously and evenly across frames, making them almost
unpredictable.

Fortunately, we find it possible to utilize the burst nature of
per-frame loss events to improve FEC protection efficiency without
optimizing loss estimation methods. Specifically, a frame that has
experienced severe loss is often surrounded by multiple loss-free or
low-loss frames. Therefore, expanding the FEC protection boundary
to encompass these surrounding frames provides an opportunity to
transfer unused redundancy from them to the frame experiencing
high burst loss. Based on this insight, we reevaluate the effectiveness
of per-frame protection and expand the design space by applying
FEC encoding to multiple frames. Although the core idea is feasible,
implementing it in a practical mobile RTVS system presents several
challenges:

(i) Adapting to complex system dynamics. The effectiveness
of the FEC scheme depends on various dynamic factors, including
network conditions (e.g., loss rate and RTT) and video features (e.g.,
frame size). In RTVS, these factors exhibit high volatility, frequently
fluctuating within a single frame interval, and even more so across
multiple frames. Therefore, setting a fixed protection boundary is
not enough, posing a challenge in continuously determining the
optimal decision to adapt to these dynamics.

(ii) Fine-grained and swift decision-making. The system
needs to decide how many frames should be included in a protection
boundary in real time. This requires fine-grained decision-making,
e.g., at the frame level. However, the trend toward higher frame rates
(e.g., 120 fps) reduces the decision time window to a few millisec-
onds (e.g., 8.3 ms). Thus, the FEC scheme must be computationally
efficient to operate under such stringent time constraints.

To address the above challenges, we propose BREATH, an adap-
tive protection boundary mechanism for FEC encoding in mobile
RTVS. BREATH aims to optimize the Quality of Experience (QoE)
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for users, i.e., reducing latency by FEC protection while maintain-
ing video quality. Although extending the FEC protection bound-
ary improves the frame protection efficiency, it also introduces
additional overhead that harms QoE performance (Sec. 2.3). To
this end, BREATH incorporates a QoE-driven mathematical model
(Sec. 3.2) that quantifies the FEC protection overhead and fur-
ther solves the overhead minimization problem online (Sec. 3.3).
To enable swift, frame-level decision-making, BREATH adopts a
response-based method to dynamically construct the protection
block, thereby limiting the impact of prediction uncertainty.

We have implemented BREATH in a practical RTVS system and
extensively evaluated its effectiveness through trace-driven eval-
uations using network traces collected in our production system
(Sec. 2.2). Experimental results demonstrate that compared to state-
of-the-art FEC schemes, BREATH reduces the Deadline Missing
Rate (DMR) [31] by 17.2%-22.5% while improving the average video
bitrate by 10.6%-14.2%, successfully pushing forward the Pareto
frontier of FEC protection efficiency and overhead.

In summary, this paper makes the following contributions:

o Identifying the fundamental challenge faced by existing FEC
solutions through a large-scale measurement study on a mobile

RTVS production system (Sec. 2).

o Proposing BREATH that extends the design space of FEC encoding
by adaptively deciding the protection boundary (Sec. 3).

o Implementing BREATH in a mobile RTVS system, ensuring real-
time decision-making under strict time constraints (Sec. 3.4).

o Evaluating BREATH’s effectiveness through thorough experiments
using traces collected from the production system (Sec. 4).

2 Background and Motivation

2.1 FEC in Mobile Real-Time Video Streaming

In RTVS systems, the sender typically encodes video content
into a series of video frames, which are further packaged into media
packets and sent to the receiver for playout. The loss of any media
packet belonging to a video frame can lead to severe latency increase
and quality degradation, such as visual corruption and playback
freezing. Consequently, to provide a smooth viewing experience, all
media packets for a given frame should be received in their entirety.

However, maintaining the timely delivery of video frames in a
lossy link (i.e., in mobile networks) is challenging [37]. As a solution,
FEC is widely applied in RTVS to protect frames from packet loss.
Mainstream FEC schemes generate redundant packets from a group
of media packets and transmit them alongside the original media.
Lost media packets can be recovered at the receiver through FEC
decoding of the redundant packets, if the total number of received
packets is no less than that of the original media packets.

Most existing FEC schemes typically work on the per-frame
granularity, i.e., treating the media packets of one frame as a pro-
tection (encoding) block. To achieve successful protection, these
schemes are designed to ensure that the redundancy rate exceeds
the estimated loss rate of each frame. The redundancy rate is calcu-
lated by dividing the number of redundant packets by the number
of media packets. In addition, the loss rate of the next frame is
estimated by filtering or smoothing methods based on past loss rate
observations (rule-driven, e.g., WebRTC [47]), or by the output of
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a neural network that takes the past loss rate and other status as
input (learning-driven, e.g., DeepRS [8] and Tooth [4]).

While more redundancy increases the recovery probability, it
occupies the available bandwidth of video content, thus degrading
video quality. To curb the bandwidth overhead, RTVS systems com-
monly limit the maximum redundancy rate to below a specific ratio
of media packets. For example, WebRTC [47] limits it to 50%.

2.2 Limitations of Existing FEC Schemes

To investigate how the existing FEC-based solutions perform in
the wild Internet, we present the results of a large-scale study mea-
suring the RTVS service of one of the top-tier streaming platforms.

System setup. Our system is built on the open-source WebRTC
[47] architecture and deploys WebRTC’s flexible FEC scheme with
the default settings, representing a standard solution in large-scale
RTVS transmission systems. WebRTC estimates the loss rate by
the maximum of the average loss rate observed in the past time
windows (e.g., 100 ms) and uses a built-in lookup table to map the
estimated loss rate to a required redundancy rate for each frame.

Dataset. The collected dataset involves over 100,000 users and
spans 65,742 video sessions that experienced packet loss events,
accumulating over 153 million video frames and 1,500 hours of
video streaming. It encompasses a wide range of users from vari-
ous mobile and wireless networks and geographical locations and
ISPs, enabling us to uncover systemic challenges of FEC in the
wild. For each video session, the following performance metrics are
collected: (i) frame size in bytes; (ii) available bandwidth of each
frame (provided by WebRTC); (iii) number of lost packets during
transmission of each frame; (iv) number of media packets and re-
dundancy (FEC) packets contained in each frame; (v) transmission
latency of each frame, measured from the frame being encoded at
the sender to being ready for decoding at the receiver!. Note that all
data were collected with user permission and contained no private
user information. By analyzing this dataset, we found that:

Observation: Even though existing FEC schemes provide
adequate redundancy, they still cannot protect frames from
frequent loss events.
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Figure 1: Session average loss and Figure 2: Loss and redundancy
redundancy rates. rates in failed frames.

Our measurements reveal a critical paradox in the performance
of the deployed FEC. As shown in Fig. 1, WebRTC provides 11.2%
redundancy on average across all sessions, while the average loss
rate is only 2.7%. This suggests that FEC provides an additional
9.5% of protection for video frames. Ideally, this redundancy could
cover all lost packets, or at least most of them. However, it is strik-
ing that even when protected by the FEC, 27.6% of the frames that

This paper focuses on transmission latency because it accounts for nearly 80% of
the E2E latency in our system. Previous studies like [50, 53] have also observed that
transmission latency dominates E2E latency.
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encountered loss events failed to be decoded (referred to as "failed
frames"), as illustrated in Fig. 2. Such failed frames can only be
recovered through retransmission at the sender, but this process
requires at least one RTT to complete, resulting in prolonged frame
latency. The result shows that the median transmission latency of
failed frames is significantly (2.7 times) higher than that of recov-
ered frames?, reaching 236 ms (Fig. 3), which is far beyond the 150
ms transmission deadline [18, 30, 31, 38, 43, 52].
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Figure 3: Latency distribution of Figure 4: Burst length of high-

recovered vs. failed frames. loss events in failed frames.
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Drilling down into these failed frames reveals that they suffer
from extremely high packet loss: 72.5% of them experience a loss
rate higher than 50%, which exceeds the maximum frame redun-
dancy rate allowed by the system. Therefore, we further conclude
that these high-loss events are transient bursts instead of sustained pe-
riods of poor connectivity. As shown in Fig. 4, about 80% of high-loss
events (i.e., loss rate >50%) last for only one frame, and over 93%
span three frames. Similar observations have also been reported in
recent studies like [38].

These results indicate that high-loss events have low temporal
correlation, which makes them extremely difficult to foresee. Con-
sequently, even when there is sufficient redundancy budget at the
session level, existing FEC schemes face a fundamental challenge
in precisely allocating redundancy to each frame for recovery.

Root Cause: Protection failures stem from the temporal
misallocation of redundant resources due to unpredictable,
high-intensity burst loss events.

For rule-driven FEC schemes like WebRTC, these burst loss
events are often too short-lived to be reliably captured and ac-
curately predicted by backward-looking loss rate predictors. Our
dataset shows that a long-term statistical window may report a
much lower average loss rate (e.g., 7.7%), while masking the fact
that these packet losses were concentrated in a single, catastrophic
burst (e.g., with 57% loss rate) in a frame.

Learning-driven FEC schemes also struggle with such prediction
uncertainty. The features available before transmission (e.g., past
network statistics) often have low correlation with future, instanta-
neous burst loss events, making the loss rate prediction intractable.
A slight prediction error during a burst can result in an entire frame
failing to be recovered.

When addressing the observed issue, FEC schemes must choose
between (i) setting a continuously high redundancy rate, which
wastes significant bandwidth on frames that will not experience loss
events, and (ii) maintaining low redundancy, which is insufficient
for protecting against burst loss.

2"Recovered frame" indicates a frame for which specific packets were lost, but were
recovered by the receiver based on redundant FEC packets.
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Summary. Our analysis reveals a fundamental limitation of
existing FEC solutions: They rely on pre-emptive, per-frame loss
estimation and redundancy allocation. This approach proves ineffi-
cient against the unpredictable and dramatic variance of per-frame
loss rates, creating a dilemma between excessive bandwidth over-
head and frequent recovery failures.

2.3 Opportunity: Extending the FEC Boundary across Frames

As indicated above, per-frame FEC schemes are inherently vul-
nerable to the unpredictable nature of the loss rate at the frame
level. Thus, we have the following question: Is it possible to im-
prove the FEC protection efficiency without pursuing a perfect loss
rate estimation method?
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Figure 5: Idea of multi-frame FEC Figure 6: Estimation error at
protection. different frame levels.

Basic idea. The chance lies in our former observation that frames
adjacent to the one that has experienced burst packet loss are often
free of packet loss or only encounter slight loss events (Fig. 4). In
other words, using additional redundancy resources in other frames
to cover burst loss events in a specific frame is feasible. This finding
prompts us to expand the perspective of the FEC protection from a
single frame to multiple frames.

Fig. 5 provides a simple illustration of how this idea works®.
Assume there are four consecutive frames, each containing the
same number of media packets. Specifically, frame #2 will encounter
four lost packets, while the other three frames will experience no
loss. Suppose that the estimated loss packets (loss rate multiplied
by media packets) is one packet per frame, corresponding to the
redundant packet provided by FEC (blue line in Fig. 5). In this
scenario, most FEC schemes focusing on single-frame protection
will suffer from three lost packets in frame #2 (light red squares
in Fig. 5) due to underestimating its loss rate. However, frames #1,
#3, and #4 are overprotected, meaning they have redundant packets
that are not used to recover lost packets. Fortunately, if the FEC
scheme sets its protection boundary to all four frames, using the
extra redundant packets in the loss-free frame can perfectly recover
the lost packets in frame #2, as highlighted by the three arrows in
Fig. 5.

Additionally, we have also observed that the burst nature of
per-frame loss can be smoothed out at the multi-frame level. As
shown in Fig. 6, the loss rate estimation error decreases when the
observation unit expands from one frame to five frames, in terms of
mean absolute error (MAE). Note that these accuracy improvements
were achieved using the default loss rate estimator in WebRTC. This
phenomenon can be explained by the Law of Large Numbers [14]:
The observed loss rate is more likely to converge to the expected
mean as the number of samples increases (as reported in [4]). These
results bring the following insight:

3This example only showcases the core concept and has been simplified for easier
understanding. The practical implementation is more complicated (details in Sec. 3).
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Insight: Expanding the FEC protection boundary from one
frame to multiple frames can reduce the impact of burst
loss unpredictability.

In essence, the issue in Sec. 2.2 can be considered a supply-
demand imbalance problem, in which the receiver demands the
redundancy supplied by the sender against loss events. Our insight
indicates that mapping the FEC supply and demand is much easier
at a coarser, multi-frame level than at the single-frame level due to
the uneven and discontinuous nature of loss events across frames.

Strawman solution. Recall that RTVS systems should adhere
to the 150 ms transmission deadline for each frame. Since FEC re-
dundant packets are usually sent with the protected media packets,
an intuitive method following our insight and Fig. 6 is to maximize
the protection boundary while ensuring the protected frame range
does not exceed the single-frame transmission deadline. Namely,
set the protection boundary as | (deadline - OWD) X frame rate]
frames [38]. Here, OWD indicates the one-way delay from the
sender to the receiver. For example, with a frame rate of 30 fps, an
OWD of 30 ms, and a deadline of 150 ms, this method (denoted as
"Mpb-WebRTC") sets the protection boundary to three frames.

Our controlled experiments in Sec. 4 confirm that compared to
the original WebRTC, Mpb-WebRTC indeed improves the recovery
rate (i.e., the ratio of recovered frames to all frames) from 91.1%
to 95.2%, as shown in Fig. 9. However, Mpb-WebRTC decreases
the user-perceived QoE performance in terms of latency. Tab. 2
indicates that Mpb-WebRTC performs worse than WebRTC on
almost all latency metrics, including average, P50, and P95 values.
This is because the generation of redundant packets starts after all
frames within the block are encoded. Consequently, the receiver
cannot recover the former lost frames in a block until it receives
the redundant packets, which increases the latency of all recovered
frames. Critically, as the protection boundary continues to expand,
it yields diminishing marginal returns in recovery probability, while
the recovery latency grows linearly.

To summarize, the strawman solution that adopts the maximum
protection boundary improves the FEC recovery rate but fails to
optimize QoE performance. Therefore, a more effective method
needs to dynamically adjust the protection boundary for balancing
FEC protection efficiency and overhead (e.g., transmission latency),
which motivates our work in this paper.

3 Design and Implementation

Based on the above, we propose BREATH, an adaptive protection
boundary mechanism for FEC encoding in mobile RTVS. BREATH
aims to optimize user QoE by utilizing adaptive boundary FEC
to protect frames from loss bursts. To do so, BREATH carefully
controls the temporal (i.e., recovery latency) and spatial overhead
(i.e., redundant packets) introduced by FEC, in order to minimize
frame latency without compromising video bitrate.

3.1 Design Challenges and Solutions

Challenge 1: Intrinsic trade-offs in spatial-temporal joint
optimization. In the temporal dimension, extending the protection
boundary improves recovery probability but introduces additional
recovery latency. In the spatial dimension, increasing redundancy
also enhances recovery probability but consumes effective bitrate.
Since these two decisions are tightly coupled, jointly affecting QoE,
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Table 1: Notations defined in BREATH Design

Notation Meaning

Inputs:

1 Frame interval (ms)

d(i) Number of packets in frame i

Ir Average Loss rate (%) in a protection block

sri Sending rate (Bytes/ms) of frame i

OWD; Average OWD (ms) in frame i

RTT; Average RTT (ms) in frame i

MTU Maximum transmission unit (Bytes)
Intermediate variables:

M Number of packets in a protection block

R Redundancy rate (%) in a protection block

rtx; Retransmit round(s) to complete transmitting frame i
Pr(eic)oVer Probability of frame i succeeding to be recovered
Pf(;‘{ Probability of frame i failing to be recovered

L; Transmission latency of frame i

Lr(eic)oVer Latency of frame i succeeding to be recovered
Lf(all)l Latency of frame i fails to be recovered
Parameters:

A Weight for redundant bandwidth cost

w Weight for FEC protection failure case

Outputs:

N Number of frames in a protection block

red Number of redundant packets in a protection block

the key challenge lies in quantifying and jointly optimizing latency
and redundancy overhead within a unified framework.

Solution: A QoE-driven FEC overhead model (Sec. 3.2). We
develop a mathematical model that formulates the expected tempo-
ral and spatial overhead of any FEC protection scheme. The model
quantifies the expected benefit in recovery rate improvement and
the corresponding temporal cost in recovery latency, formulates
their effect on video frame transmission latency and integrates it
with the spatial cost of redundancy rate.

Challenge 2: Computational complexity in FEC decisions.
Determining both the protection boundary and the redundancy
rate constitutes a high-dimensional problem. Achieving a globally
optimal solution within the millisecond-scale decision window
required by streaming applications is computationally difficult,
posing a severe challenge to real-time operation.

Solution: Lightweight response-based decision (Sec. 3.3).
BREATH incorporates a lightweight response-based decision mech-
anism. For each newly encoded video frame, BREATH performs
a swift expectation comparison between two options: (i) finish
the current protection block or (ii) extend it to the next frame.
This binary decision mechanism compresses the search space from
a continuous high-dimensional domain to a discrete binary one,
achieving efficient real-time adaptation.

3.2 Modeling FEC Overhead

We begin by presenting a mathematical model that quantifies
the FEC protection overhead in RTVS. This model provides a uni-
versal framework to evaluate the effectiveness of mainstream FEC
schemes. Tab. 1 summarizes the key variables in our model. We
model the expected overhead of an FEC protection boundary across
N frames with red redundant packets as shown in Eq. (1) to Eq. (3).

N
Eoverhead (N, red) = )" By, (N, red) + 1-R(N red), (1)

i=1
where Zfil Eyr, (N, red) and R(N, red) respectively denote the tem-
poral and spatial overhead. The joint optimization of these two
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overheads can be modeled in multiple ways. We adopt a linear com-
bination of them to be the expected overhead for computational
convenience, but our framework can be applied to alternative mod-
eling approaches. Ey,can be further expressed by Eq. (2):
Er, = PO (N red) - L er (N, red) + @ - PY) (N, red) - LY (N, red),
@)
where P,(,i)mue, and P}il)i , represent the probability of the i-th frame
in the protection block being successfully recovered or failing to be
recovered. Lﬁé)cm,e, and L](le. , refer to the transmission latency of the
i-th frame to be recovered by FEC decoding or by retransmission
when the FEC recovery fails. Spatial overhead R is defined in Eq. (3),
also referred to as the redundancy rate.
_ red
T ®
We introduce o and A to respectively control user preference
for better tail latency performance and less redundant bandwidth
cost. By tuning these parameters, system designers can adapt the
model’s behavior to specific application requirements.
Through the model, we reflect the impact of FEC on user QoE.
A lower overhead indicates that lost frames are more likely to be
recovered quickly with less redundancy, resulting in better user
QoE in terms of higher video quality and shorter frame latencies.
Recovery probability and expected latency formulation.
Next, we examine how different FEC protection boundaries and
redundancy rates influence the FEC overhead. We formulate the
probability and expected transmission frame latency of each recov-
ery case, taking into account multiple factors including video frame
size, network status and retransmission.
Considering an FEC protection block spanning N frames and
protected by red redundant packets, let M denote the total number
of packets in the protection block defined by Eq. (4).

N
M:;d(i) +red. (4)

When video frames in the block are transmitted over a network
link with a loss rate of Ir, they can be classified into three cases:
Lossless, FEC Recovery, and RTX Recovery. For each case, we
formulate the expected transmission latency and probability of
every frame in the protection block.

If a frame is received without any packet loss, neither FEC nor
retransmission is triggered. Since this case does not involve any
loss recovery mechanism, it is excluded from further analysis.

The second case refers to a frame that experiences packet loss but
can be successfully recovered by FEC at the receiver. The probability
of this case is given by Eq. (5).

red red .
Pl = > (M)(mm Sy (M ‘.”“”)(lr)f‘(l ~ 1M (5)
Jj=1 J Jj=1 J

In this case, the expected frame transmission latency equals the
sum of the protection block transmission time and the OWD of the
frame, as defined by Eq. (6).

(N=i)-I+ (d(N)+red)‘MTU+OWDi’ —
ST
(d(N) +red) - MTU
Sri

+OWD; +RTT; - B[rtx;]},

Lr(eic)over = mln{(N —i)-I+
d(i) - MTU

g

+OWD;,
n=0.

(6)
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where 1 = 1/0 defines whether FEC-coupled retransmission* is

used. rtx; is a random variable dependent on d(i) and Ir and its
expectation can be calculated by Eq. (7) as shown below:
z d(i) : J(1 = (Iri\T
E[rtx;] :le -1 —zrk)d(nJ - Z<_1)M(d§'l)) Ir (1 - x: )
k=1 Jj=1
™)
where 7 denotes the maximum retransmission rounds allowed for
a single packet by the system.

The third case occurs when the FEC block experiences excessive
packet losses and fails to recover any lost frames. In this case, the
lost frames are recovered via retransmission. The transmission
latency of these frames equals the transmission time of either the
frame itself or the entire protection block plus the OWD and RTT
multiplied by retransmission rounds, as defined in Eq. (8). The
probability of this case, denoted as Pg; (i), is given in Eq. (9). For
cases involving encoder overshoot [13, 16, 53, 54], please refer to
Appendix C for the adjusted latency calculation.

R LEDRE (d(N) +red) - MTU v 4 RTT, - Blrexs], 7=1
i = ST
fail d(’)s# +OWD; + RTT; - E[rtx;], n=0
(3)
M M-d(i) .
i M j —j M —d(i . »
P = 2, ( -)(W“—l’)M - ( : ())(lr)](l—lr)M J.
j=red+1 J j=red+1 J
)

The transmission latency of the third case is the highest and
represents the main contributor to the tail latency among all frames,
which directly impacts QoE. Therefore, we introduce w in Eq. (2)
to assign a higher weight to this case, encouraging the FEC scheme
to reduce the chance of FEC failure and to optimize the tail latency.

3.3 BREATH Design

Overhead minimization problem. Based on the FEC overhead
model in Sec. 3.2, we can formulate the FEC protection boundary
and redundancy rate control problem as a constrained optimization
problem of minimizing the expected FEC overhead:

}{]11'}21 Eoverhead (10)
s.t. Equation (1) to (9).

Searching for an optimal protection boundary and redundancy
rate for a series of future frames in advance is highly susceptible to
network fluctuations. The inherent inaccuracy of network state pre-
diction can significantly degrade the performance of this method.
Therefore, BREATH is designed to operate in a response-based man-
ner. As we will detail below, this approach not only allows for better
adaptation to network dynamics but also significantly reduces the
decision search space.

Specifically, we define a FEC decision as a pair (pb, red), where
pb € {0,1} is a binary flag indicating whether to finish the pro-
tection block on the current frame. Alg. 1 shows how BREATH
determines the optimal (N, red) using pb.

Each time a new frame is encoded, BREATH appends its packets
to the ongoing protection block, incrementing the accumulated
frame count N by one. It then traverses from red* (red from the
last round) to possible redundancy levels (e.g., up to 100% of media

4"Retransmission coupled with FEC" refers to a mechanism where retransmission is
triggered only after the FEC recovery attempt fails.
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packet numbers) to determine the red that yields the minimum
current FEC overhead, denoted as (Egyerhead )now- It then utilizes the
predicted next frame size d (NA+ 1) derived from the latest target
video bitrate to calculate the minimum overhead of extending the
protection boundary to the next frame, denoted as (Eoyerhead )next-
Then, BREATH compares the two. If (Eqyerhead)next is smaller, set
pb =0 and hold the FEC protection block unfinished until the next
frame is encoded; otherwise, set pb = 1, and red redundant packets
are generated and transmitted.

This allows BREATH to remain responsive to network dynamics
by making timely decision updates. It also reduces the search space
to at most 2 X redpyay, where redpa, denotes the maximum num-
ber of redundant packets per block, enabling BREATH to operate
efficiently within each frame interval (see Appendix E for detailed
computational overhead analysis).

Algorithm 1 BReaTH: Adaptive Protection Boundary FEC

. Input: d(1),...,d(N), d(N +1), red*, I, I, sr;, RTT;, OWD;

2: parameters: ©, A

3: Output: pb, red

// Step 1: Compute minimal overhead and optimal red with cur-
rent N frames (up to 100% redundancy).

—_

5: (Eoverhead)now — minrede [red*, ZI_\il di)] Eoverhead (N) red)
6: redpow < argmingeq Eoverhead (N, red)
// Step 2: Compute minimal overhead with predicted N +1 frames

8: (Eoverhead)next — minredG[red*, Zl_\l;rl di)) Eoverhead(N +1, red)
is
// Step 3: Make protection boundary decision

9:
10: if (Eoverhead )next < (Eoverhead Jnow then
11: pb — 0, red” «— rednoy > Hold block
12: else
13: pb — 1, red « rednoyw > Finish block
14: end if
‘" Video Sender Receiver
L Content | ) .
— Video
Video video frame size { Render J
| Encoder | .
s Video Decoder
packets pjock status FEC Decoder
E:ci(cier Breath Packet Receiver
\ *(pb, red)” net status

Packet
| Sender |
Figure 7: Workflow of BREATH.

Workflow. As shown in Fig. 7, BREATH works at the RTVS
sender between the Video Encoder and the FEC Encoder. During
transmission, video content is first encoded into frames by the
video encoder and packetized into packets. The packets are then
passed to Packet Sender and sent immediately, while copies of them
are passed to FEC encoder for redundancy generation. After FEC
encoding, the redundant packets generated are inserted into the
sending queue. With the presence of BREATH, when and how many
redundant packets will be generated are controlled. After a new
frame is encoded, BREATH will take its frame size, frame interval
and current network status, including RTT, sending rate and lost

!

redundant
packets
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rate as input and search for a best (pb, red) decision as illustrated in
Alg. 1. The decision will then be passed to FEC encoder to control
whether to finish the FEC block on the current frame and generate
red redundant packets, or wait for the next frame.

3.4 System Implementation

We implement BREATH in a RTVS system built on an open-
source QUIC library [3]. The system operates as shown in Fig. 7
and incorporates the following components: (i) FEC codec: A high-
performance Reed-Solomon (RS) [48] codec is adopted to represent
the standard FEC codec. Note that BREATH is agnostic to the FEC
codec and can work with others (e.g., XORFEC). (ii) Video codec
and adaptive bitrate (ABR): A frame-level ABR mechanism adjusts
the video encoding bitrate based on bandwidth estimates from the
congestion controller. As video frame transmission latency is the
main component of concern, we adopt a simulated video encoder
to generate frames that meet the target encoding bitrates. (iii) Loss
recovery: A fundamental retransmission recovery mechanism for
the lost packets is deployed in the system, independent of the FEC
scheme. (iv) Network state estimation: The system selects the maxi-
mum loss rate observed over 10 consecutive 100 ms measurement
windows as the input loss rate. RTT is collected from transport-
layer acknowledgments. The sending rate is obtained from the
congestion controller Copa [5]. Crucially, the system paces all pack-
ets (both media and redundancy) to prevent self-inflicted traffic
bursts.

BREATH configuration. We set BREATH’s parameters in Eq. (1)
and Eq. (2) as w = 10 and A = 2. These values were empirically
chosen to provide a balanced performance between visual quality,
timeliness, and redundancy cost (see Appendix D). More configura-
tion details are provided in Appendix B.

4 Evaluation

4.1 Setup

Trace-driven emulation testbed. We use Linux TC to replay
network traces collected from our production system (Sec. 2), which
contain available frame-level bandwidth and loss rate. Our testbed
includes over 100 mobile video sessions, each lasting between 60
and 70 seconds, with over 20% lost frames. The video frame rate is
set to 60 fps. To better evaluate the performance of FEC schemes, we
configure the OWD to be 50 ms. This setting emulates a typical long-
distance scenario, where high latency makes timely recovery more
challenging and magnifies the differences between FEC strategies.

Metrics. We evaluate BREATH using two categories of metrics.
First, user QoE metrics: (i) Average Video Bitrate: The bitrate of me-
dia data, excluding redundancy. Higher values indicate better visual
quality (validated by perceptual visual quality analysis in Appendix
F). (i) Deadline-Missing Rate (DMR): The fraction of frames whose
transmission latency exceeds the interactivity deadline (150 ms in
our setting), which is introduced in [31]. DMR captures tail latency
and directly impacts user experience. (iii) Video frame latencies
(VFL): The transmission latency of video frames. The average, 50th,
and 95th percentiles of VFL values are reported. Second, FEC perfor-
mance metrics: (i) Redundancy Rate: The ratio of redundant packets
to media packets. (ii) Recovery Rate: The ratio of lost frames that are
successfully recovered by FEC. (iii) Recovery Latency: The average
transmission latency of lost frames recovered by FEC.
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Baselines. We deploy the following baselines in our system

(Sec. 3.4) and compare BREATH against them:

e WebRTC [46]: The default FEC mechanism in the widely-used
WebRTC framework [47]. We implement its redundancy decision
policy and set the encoding block size to a single frame.

e Tooth [4]: Recent effort which represents the state-of-the-art
performance among existing learning-based FEC solutions.

o Mpb-WebRTC (Max Protection Boundary WebRTC): A variant of
WebRTC that uses the same redundancy policy but always ex-
pands the FEC coding block to the maximum size allowed by the
deadline, as described in Sec. 2.3.

4.2 Overall QoE Performance

3.5
Y Breath
A Tooth
4.0 WebRTC *
= Mpb-WebRTC
s &
o 4.5 X
5 ?°
(a)
5.0
A
5.5

21 22 23 24 25

Average Bitrate (Mbps)
Figure 8: Trade-off between video bitrate (visual quality) and
Deadline-Missing Rate (timeliness). BREATH operates in the desir-
able top-right quadrant, achieving the best of both.

BREATH significantly improves user QoE. Our primary find-
ing is that BREATH breaks the fundamental trade-off between visual
quality (Bitrate) and interaction timeliness (DMR), establishing a
new Pareto frontier. As illustrated in Fig. 8, BREATH is the only
scheme that operates in the optimal quadrant of highest bitrate and
lowest DMR, achieving 2.47 Mbps and 3.96% respectively.

Superiority over single-frame FEC. Compared to single-frame
schemes (WebRTC and Tooth), BREATH leverages cross-frame pro-
tection to handle burst losses more efficiently. This translates into
substantial QoE gains: BREATH achieves a 14.4% higher bitrate than
WebRTC (2.47 vs. 2.16 Mbps) and a 10.8% higher bitrate than Tooth
(2.47 vs. 2.23 Mbps), while simultaneously slashing their DMRs by
17.3% and 22.5%, respectively.

Superiority over naive cross-frame FEC. Mpb-WebRTC, the
strawman cross-frame approach, proves inefficient. Despite max-
imizing protection power, it delivers only a marginal DMR im-
provement over WebRTC (4.7% vs. 4.8%) and consumes the most
redundancy (39.8%, see Sec. 4.3). In stark contrast, BREATH achieves
a 15.4% lower DMR and a 16.0% higher bitrate than Mpb-WebRTC.
This highlights that simply maximizing the protection boundary is
insufficient; an intelligent, fine-grained adaptation is necessary to
achieve tangible QoE gains.

4.3 FEC Performance Breakdown

Here, we dissect the detailed video frame transmission latency
distribution and underlying FEC metrics to reveal the source of
BREATH’s QoE improvements. We show how its adaptive protection
boundary masters the two fundamental trade-offs in FEC design:
cost-efficiency and timeliness.

Cost-efficiency: adaptive redundancy. Fig. 9 reveals the source
of BReATH ’s efficiency. Compared with single-frame FEC schemes,
BREATH achieves a higher recovery rate (91.8%) at a considerably
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Figure 9: FEC protection cost-Table 2: Transmission latency

efficiency trade-off. summary (smaller is better).

lower redundancy cost (24.2%). This is because BREATH’s adaptive
boundary allows frames within a block to share their redundancy
budget. A frame hit by a severe burst loss can be rescued by unused
redundancy from its neighbors—redundancy that would otherwise
be wasted in single-frame schemes. This enables BREATH to handle
severe loss events that would overwhelm single-frame schemes,
achieving better protection with less overhead.

In contrast, while Mpb-WebRTC achieves the highest recovery
rate (95.2%), it fails to translate this into a low DMR (Fig. 8). Its
pitfalls are twofold. (i) High-latency, futile recoveries. By always
using the maximum boundary, Mpb-WebRTC pushes recovery la-
tencies dangerously close to the deadline. This leaves no margin
for network jitter, causing many recoveries to complete after the
150 ms deadline has passed, rendering them useless for QoE. (ii)
Inefficient, over-provisioned redundancy. Mpb-WebRTC fails to ad-
just its redundancy rate when expanding its protection boundary.
It overlooks the cost-saving potential of cross-frame protection
and, like WebRTC, over-provisions redundancy, leading to wasteful
overhead. This highlights that a high recovery rate is meaningless
if recoveries are not timely, a point we analyze next.

Timeliness: accelerating recovery. Tab. 2 shows that BREATH
strikes a superior latency balance. It achieves a significant 10 ms
reduction in tail latency (P95) compared to the best baseline (We-
bRTC) at the cost of a negligible 2 ms increase in median latency
(P50). This small increase in median latency is the price for un-
locking the powerful benefits of cross-frame protection, a trade-off
that proves highly effective. In a word, BREATH’s adaptive protec-
tion boundary advances the Pareto frontier between redundancy
efficiency and low-latency recovery.

Conversely, Mpb-WebRTC suffers a significant degradation in
median latency (7 ms worse than WebRTC) while barely improv-
ing tail latency. Additionally, we report the recovery latency of
all schemes, where Mpb-WebRTC reaches a stunning 114 ms com-
pared to 76 ms of single-frame schemes and 94 ms of BREATH. As
analyzed in Sec. 2.3, its largest protection boundary excessively
delays all recoveries, overlooking the diminishing marginal benefit
of increasing the block size.

5 Discussion and Future Work

Co-decision of target bitrate and redundancy rate. Follow-
ing prior designs, BREATH determines the redundancy rate after
video frame encoding. This sequential decision may lead to slight
bitrate fluctuations across consecutive frames. For future explo-
ration, BREATH can be improved by jointly determining the video
bitrate and redundancy rate, such as combining the core idea of
existing studies on co-decision mechanisms [2, 7].
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Integration with visual quality evaluation. For computa-
tional efficiency, BREATH adopts video bitrate as the visual quality
optimization goal. However, BREATH could also integrate with vi-
sual quality evaluation methods by replacing 3%, d(i) from Eq. (3)
with visual quality metrics (e.g., PSNR [17], SSIM [45], VMAF [35],
etc.), providing a closer approximation of user’s QoE.

Optimization of loss rate estimator. BREATH achieves QoE
improvements based on a simple loss rate estimator (the same
as WebRTC). However, using an advanced estimator that statisti-
cally utilizes temporal correlation or captures loss characteristics
based on deep-learning methods is also possible to further enhance
BREATH’s adaptability and robustness in highly dynamic networks.

6 Related work

Previous studies have focused on accelerating retransmissions
[9, 26, 34, 39], but relying solely on retransmission is often inad-
equate for meeting the stringent latency requirements of RTVS.
Therefore, extensive works [2, 4, 6-8, 23, 31, 32, 36, 38, 42] have
shifted their focus to optimizing FEC strategies for RTVS. Recent
FEC schemes [6, 8, 23] employ deep neural networks to better
adapt to network dynamics. Subsequent efforts [4, 38] characterize
fine-grained packet loss patterns and optimize FEC redundancy
allocation accordingly. Specifically, Tambur [38] reschedules FEC
packets of one frame to later frames to improve recovery robustness
under burst loss, but derives its constant interleaving interval (7)
from the frame deadline. This pushes recovery latency close to the
deadline limit, sacrificing latency to ensure recovery probability
(similar to Mpb-WebRTC in Sec. 2.3). Tooth [4] adjusts redundancy
levels based on frame-level loss rate distribution according to frame
sizes. Beyond solely optimizing FEC, there are also studies [2, 7, 31]
that optimize FEC with other modules, such as retransmission, ABR,
and congestion control. However, as illustrated in Sec. 2.2, existing
solutions are fundamentally limited by inaccurate estimation of the
frame-level loss rate, and thus cannot precisely allocate redundancy.

A related but distinct research field is that of error concealment
techniques [19, 21, 22, 44, 55]. The goal of these studies is to miti-
gate the perceptual impact of loss without relying on redundancy
or network-based retransmissions. Emerging approaches [10, 24]
explore encoder-side resilience by redesigning neural video codecs
to support loss-resilient frame delivery. These approaches can be
applied with BREATH to further improve the user’s QoE.

7 Conclusion

This paper presented the first-of-its-kind adaptive protection
boundary mechanism BReaTH for FEC encoding in RTVS. BREATH
dynamically adjusts the protection boundary and redundancy rate
by minimizing the FEC protection overhead based on network and
video dynamics. Implemented in a RTVS system and evaluated
using traces collected from the production system, BREATH signifi-
cantly improves user QoE, pushing forward the Pareto frontier of
loss recovery efficiency and overhead.
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A Ethics

This work does not raise any ethical issues. All collected data are
authorized by users, desensitized, and include performance-related
information only.

B Other Configuration of BREATH

For simplicity and calculation efficiency of BREATH, we set the
expected retransmission round E[rtx;] in Eq. (8) as 1°. We normal-
ize YN, Ey,; in Eq. (1) by dividing it by N - RTTp;,. For d(i:I-l) in
Alg. 1, it is derived from the latest target video bitrate from the
ABR controller of the system.

C Impact of Video Encoder Overshoot

In practice, when adopting different video encoding strategies
or encountering highly dynamic motion scenes, video frames may
be significantly larger than the target encoding size (known as
"encoder overshoot" [13, 16, 53, 54]), and they cannot be transmit-
ted within a frame interval. Thus, the transmission time of the
protection block in Eq. (6) and Eq. (8) should be replaced by:

MTU
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D Parameter Sensitivity
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Figure 10: Impact of w and A on the trade-off between QoE metrics.

SWe observed in evaluations that different values of E[rtx; | hardly affect BREATH’S
performance advantages, whereas the computation overhead of solving for it is
significant.
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In Breath, w governs protection boundary aggressiveness and A
regulates redundancy usage. In Fig. 10, the parameter sets along the
red solid curve represent the Pareto-optimal frontier of BREATH's
performance. Among them, we select the parameter set [10, 2] to
represent BREATH for its superior spatial redundancy efficiency
with a satisfactory latency performance.

(i) Timeliness vs. quality (4). The parameter A directly controls
BREATH's sensitivity to bandwidth overhead. A lower A allows
BREATH to allocate more redundancy to enhance timeliness. As
shown by the red solid curve in Fig. 10, lowering A from 2.0 to 0.25
makes BREATH prioritize timeliness over bandwidth efficiency. This
improves DMR from 3.96% to 3.6%, at the cost of a 10% drop in
average bitrate (from 2.47 to 2.22 Mbps).

(ii) Tail vs. median latency (w). The parameter w governs the
aggressiveness of tail latency control. A higher w value encourages
BREATH to adopt more aggressive protection boundary strategies
to minimize deadline misses. As shown by the blue dashed curve in
Fig. 10, increasing w from 5 to 50 makes BREATH more aggressive
in controlling tail latency. This reduces DMR from 4.0% to 3.7% at
the cost of a drop in bitrate and a slight increase in median latency.

For production deployment, Operators should increase w when
retransmission rates are high (indicating low FEC recovery rates),
and decrease it when recovery latency is excessive. Increase A to
curb redundancy bandwidth consumption and decrease A to utilize
available bandwidth for higher reliability.

E Computational Overhead

All experiments were conducted on a Linux server equipped
with an Intel Xeon Silver 4214 CPU @ 2.20 GHz running Ubuntu
20.04.6 LTS, and BREATH’s per-frame decision-making time was
recorded. Our analysis shows a negligible mean computation la-
tency of 0.47 ms, with 94.6% of computations completed within 1
ms, and 98.8% completed within 2 ms. Within the processing time
of Alg. 1, 23.4% is spent on Step 1 and 76.5% on Step 2, while Step 3
takes only 0.1%. The near-instantaneous decision-making confirms
that BREATH can operate even in extremely demanding scenarios
like 120 fps streaming.

F Perceptual Visual Quality Analysis

We extended our evaluation using VMAF, the industry-standard
perceptual metric that accurately reflects subjective quality. We per-
formed a curve fitting analysis of the bitrate-to-VMAF mapping on
the UVG dataset [33]. Specifically, we encoded all 16 videos in the
dataset at various bitrates to derive the fitted VMAF scores corre-
sponding to specific bitrates. Results confirm BREATH’s 10.6%-14.2%
bitrate gains effectively translate into perceptible visual improve-
ments, achieving a 3.5%-4.7% VMAF increase. These results serve
as a robust and reproducible proxy for subjective QoE, effectively
demonstrating user experience enhancement.
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