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Abstract

As the demand for streaming services surges, content de-
livery network (CDN) operators face increasing pressure
to scale live video delivery without proportionally increas-
ing infrastructure costs. While best-effort edge resources
offer a cost-effective extension to traditional CDN capacity,
their limited bandwidth and unstable performance pose sig-
nificant challenges. Our operational experience shows that
naively layering such resources onto existing CDN infras-
tructure falls short in meeting performance and scalability
demands. This paper presents RLIVE, a robust delivery sys-
tem that scales CDN capacity by integrating best-effort edge
resources. RLIVE features a redundancy-free multi-source
data plane to support reliable and cost-efficient live stream-
ing, along with a multi-layer collaborative control plane that
combines the global view with local adaptability for scal-
able user-to-node mapping. Deployed in ByteDance CDN to
support large-scale live streaming services with hundreds of
millions of daily viewers, RLIVE has tripled delivery capacity
while reducing rebuffering events by 14.9-20.1%.

CCS Concepts: - Computer systems organization — Dis-
tributed architectures; - Networks — Network services;
Network design and planning algorithms.

Keywords: Content delivery network, Live streaming ser-
vices, Distributed system, Quality of experience (QoE)

1 Introduction

The explosive growth of crowdsourced live video stream-
ing and e-commerce live streaming has driven an unprece-
dented surge in the number of live streams and viewers
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[39, 55, 72, 78, 87]. Content delivery networks (CDNs) have
long served as the backbone of live stream delivery [35],
where the content is generated in real time and demands
stringent latency guarantees. However, CDN operators face
growing pressure to scale delivery capacity while controlling
operational costs [78, 82]. In response, many operators have
begun to leverage underutilized best-effort edge resources
that are primarily owned and operated by Internet Service
Providers (ISPs), such as base stations or apartment gateway
devices. Compared to existing dedicated CDN nodes, these
resources offer better proximity to end users and are more
cost-effective [62, 67, 83].

Yet simply offloading traffic to these edge resources as an
extended layer of dedicated CDNs is not enough. A key shift
in the live streaming landscape is the rising importance of
user-perceived Quality of Experience (QoE), typically mea-
sured by end-to-end (E2E) latency, rebuffering ratio, and
video bitrate. Even small degradations in QoFE can lead to
sharp drops in user engagement [17, 40, 88]. This require-
ment rules out peer-assisted delivery systems that allow end
hosts directly serve content to each other for reduced server
load, as they were primarily cost-driven and often failed
to meet the stringent performance guarantees in modern
live streaming services [4, 7, 13, 32]. Essentially, our goal
is to leverage the best-effort edge resources for scaling live
streaming services, while matching the QoFE of dedicated
CDN infrastructure.

Our deployment experience underscores the challenges
to achieve the above goal. As a major CDN operator sup-
porting multiple live streaming platforms with hundreds
of millions of daily active users, we were among the first
to explore the use of best-effort nodes for large-scale live
streaming delivery. Our initial approach was straightforward.
We extended our CDN with only high-availability best-effort
nodes-specifically, the top 1% ranked by bandwidth capa-
bility and stability. However, this naive attempt resulted in
significant increases in both E2E latency (26%—35%) and the
rebuffering rate (37.5%—44.7%), indicating that simply inte-
grating the most promising best-effort nodes cannot ensure
QoE. In other words, we faced a critical dilemma: How to fully
harness all the best-effort edge resources to scale live streaming
services without sacrificing latency or streaming quality?

We found that even the top 1% of best-effort nodes suffer
from low stability and limited capacity, which fundamentally
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limits performance. Fortunately, multiple best-effort nodes
that are chosen properly can complement each other for
robust live content delivery. Specifically, these nodes can
act as intermediaries that pull different parts of the same
live stream from dedicated CDN nodes and then transmit
content to clients. In this way, the performance degradation
on one node can be mitigated by the other available nodes.

However, this design raises an additional challenge: de-
termining which best-effort nodes should deliver each video
session. This process is referred to as user mapping. User
mapping relies on the status information (e.g., bandwidth
availability and forwarding streams) of each node. Given
the hyperscale (e.g., around 1 million) of best-effort nodes,
it is impractical to use a centralized control plane to collect
real-time node states (as done in LiveNet [39]). On the other
hand, although such states are available at each node, a node
cannot directly access the information of other nodes due
to NAT constraints. Therefore, user mapping is also difficult
to update in a distributed way (as done in VDN [48]). To
this end, we are seeking a collaborative control plane that
combines both centralized and distributed views.

The insights above motivate the design of RLIVE, a ro-
bust and scalable delivery system for live streaming services.
RLIVE aims to achieve two goals: (i) Robustness: ensuring a
QoE comparable to traditional CDN-only deployments, and
(ii) Scalability: expanding the system’s capacity to handle
increasing live streaming demand.

Nevertheless, three practical challenges arise in meeting
the stringent QoE requirements of real-time generated live
content. First, the global controller and the individual edge
nodes update their information at different timescales, poten-
tially leading to inconsistent user mapping decisions, which
are hard to integrate. Second, clients must be able to reorder
video data from multiple edge nodes into a single, continuous
stream in real-time, while most live streaming protocols (e.g.,
HLS [51] and FLV [27]) lack an explicit identifier to track the
data sequence. Third, there are multiple choices for where
lost data should be retransmitted (e.g., at the CDN or best-
effort nodes), reflecting the trade-off between recovery time
and bandwidth cost. Determining the proper loss recovery
choice under dynamic network conditions is non-trivial.

RL1vE addresses these challenges by introducing a
multi-layer collaborative control plane as well as a
redundancy-free multi-source data plane. Specifically,
RLIvE facilitates a three-layer collaboration (i.e., the global
controller, individual edge nodes, and user clients) to bal-
ance centralized coordination for global optimization with
decentralized decision-making for local responsiveness. On
the data plane, RL1VE splits each video stream into parallel
substreams, coupled with a distributed sequencing algorithm
that maintains cross-source consistency, enabling real-time
reordering. In addition, RLIVE incorporates a QoE-driven
data loss recovery mechanism that can strike the perfect
balance between recovery time and cost.
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Figure 1. Live CDN with best-effort nodes.

Deployed to support several large-scale live streaming
services over the past 3 years, RLIVE has reduced rebuffering
events by 14.9-20.1% and improved video bitrate by 10.2-
11.4%, compared to the traditional CDN-only delivery. More-
over, it expands the system’s capacity to meet bandwidth
demands by approximately 3x. These results demonstrate
the effectiveness of RLIVE in successfully leveraging best-
effort edge resources to scale live streaming services with
robust data transmission and guaranteed QoE.

In summary, this paper makes three key contributions:

o Presenting RLIVE, a first of its kind to exploit the massive
best-effort edge resources to build a robust delivery system
for scaling live streaming services.

e Designing a collaborative control plane and a multi-source
data transmission architecture to address the key chal-
lenges of deploying RLIVE at scale.

e Deploying RLIvE in ByteDance CDN to support several
popular live streaming services. The large-scale deploy-
ment revealed improved QoE and scaling effectiveness.
Our work provides practical design choices for leveraging
underutilized edge resources for live streaming.

Ethics. This work raises no ethical concerns. All data and re-
sources were used with permission and contained no private
user information. It is also worth noting that the best-effort
nodes function solely as relays of validated CDN content:
they do not modify data and never handle user uploads or
private traffic.

2 Background and Motivation
2.1 Live CDNs with Best-effort Nodes

CDN operators play a central role in delivering seamless
video experiences for live streaming services by maintain-
ing a globally distributed infrastructure. CDNs typically rely
on dedicated edge nodes with high and stable bandwidth
capacity. However, scaling such infrastructure to meet the
ever-growing traffic demand of live streaming presents sub-
stantial challenges [78]. Although expanding capacity with
dedicated resources (e.g., high-performance servers) is feasi-
ble, it incurs significant cost, both in terms of infrastructure
deployment [24, 75] and bandwidth usage [2, 66], which
represents a considerable financial burden [83].
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In response, CDN operators have begun exploring cost-
effective alternatives by renting resources provided by third-
party vendors worldwide [14, 26, 54]. These vendors ag-
gregate underutilized bandwidth from geographically dis-
tributed locations, offering resources that are closer to end
users than dedicated CDN nodes and often deliver compet-
itive round-trip times (RTTs) [83]. When aggregated and
integrated into CDN infrastructure, we refer to them as best-
effort nodes.

In ByteDance, best-effort nodes act as extended relays of
the CDN. Most of these nodes are deployed in ISP-managed
facilities, such as base stations or apartment gateway devices.
Others are installed in residential settings where users can-
not control the devices or upload content via them. Deploy-
ment always involves informed consent, and participants
may receive incentives (e.g., app credits) for maintaining a
minimum uptime. Note that, except for streaming content,
no user traffic passes through these nodes.

As a major CDN operator serving several large-scale live
streaming services, we are among the first to incorporate
best-effort nodes into a global CDN architecture. Figure 1(a)
illustrates the typical architecture of a CDN augmented with
best-effort nodes, which reflects our initial system (§ 2.2).
When a client requests a live video stream, it consults the
control center (on the control plane) to obtain the address of
a source node—either a dedicated CDN node or a best-effort
node-and then initiates data transmission (on the data plane)
from that node according to the retrieved address.

In our system, best-effort nodes cost 20-40% less per unit
of bandwidth than dedicated nodes. However, these nodes
are usually equipped with low-end computation and stor-
age resources, resulting in unstable availability. In addition,
many are located behind NATs of varying types, further
complicating connection stability. Bandwidth capacity also
varies widely: as shown in Figure 1(b), approximately 29% of
these nodes have link capacities below 10 Mbps, and only 12%
exceed 100 Mbps. This limited bandwidth capacity restricts
the number of concurrent live-streaming sessions a node
can support and makes it more susceptible to performance
degradation under network jitter.

2.2 Failure of the Strawman Attempt

To scale our original CDN system with best-effort nodes
without sacrificing performance, an intuitive way is to simply
extend the CDN with an additional layer that only consists
of the top 1% high-availability best-effort nodes in terms
of bandwidth capacity and connectivity. We refer to this
solution as single-source transmission. In this way, clients pull
each stream from a single best-effort node, which in turn
subscribes to a dedicated node for the requested content.

However, this strawman solution fails to meet the require-
ments for serving our 750 million daily active users due to
the following inherent limitations:
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Figure 2. Characterizing best-effort nodes with single-

source transmission.

(i) Degraded QoE performance. We evaluate E2E latency
and rebuffering events per hundred seconds, as illustrated in
Figure 2(a). The results indicate a 26%-35% increase in E2E
latency and a 37.5%—-44.7% rise in rebuffering events, high-
lighting a notable QoE degradation. These degradations arise
from two factors. First, best-effort nodes are prone to expe-
riencing significant performance degradation or temporary
link failures due to their instability. Figure 2(c) shows the
distribution of the live span of individual best-effort nodes.
Notably, nearly 50% of the nodes have a lifespan of no more
than one day, meaning they go offline at least once per day.
This level of churn introduces randomness and instability,
which can disrupt ongoing streaming sessions and degrade
user experience. Second, their limited bandwidth capacity
reduces traffic burst resilience, causing congestion-induced
latency spikes that manifest as significant one-way delay
jitter. Figure 2(d) illustrates an example of this phenomenon
during a viewing session through one best-effort node.

(ii) Limited scaling effect. The bandwidth constraints of
best-effort nodes fundamentally limit their ability to deliver
live streaming services for large-scale concurrent clients. To

quantify this limitation, we define the traffic expansion rate

_Serving Traffic .
aS Y = Foward Traffic? where serving traffic denotes data de-

livered to clients by best-effort nodes, and backward traffic
represents data retrieved from the dedicated CDN nodes by
the best-effort nodes. A best-effort node with y can theoreti-
cally support y — 1 additional clients compared to pure dedi-
cated nodes. Figure 2(b) presents the distribution of y during
single-source transmission, revealing a median y = 3.7, with
58.5% of nodes having y < 5. Given that only 1% of best-effort
nodes (i.e., several thousand nodes) are actively utilized, this
approach yields fewer than 0.1 million (calculated based on
¥ — 1 of all nodes) additional clients, which is insignificant
against multi-million peak concurrency.

Summary. For the successful scaling of live streaming ser-
vices, it is imperative to utilize every available best-effort
node. Nevertheless, our deployment experience reveals that
even using the top 1% of these best-effort nodes that are ex-
pected to be the most capable, the single-source transmission
system cannot ensure large-scale robust data delivery. The
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pressing question then arises: How can we fully exploit all the
best-effort resources, including the weak ones, while offering a
competitive QoE comparable to that provided by pure CDN?

2.3 Opportunity: Multi-Source Transmission

The root cause of the observed robustness and scaling issues
in single-source transmission lies in the inherent instability
and limited bandwidth of best-effort nodes. Specifically, a sin-
gle node is constrained by its hardware performance. Hence,
a practical solution is to leverage resources from multiple
nodes simultaneously by multi-source transmission.

Prior work [9, 15, 28, 78] leverages multi-source delivery
but relies on redundant content replication (e.g., transmit-
ting identical content across multiple links) for reliable trans-
mission, which sacrifices bandwidth efficiency and thereby
limits scalability. To solve this issue, we begin exploring a
redundancy-free robust data plane design. Specifically, a
single video stream can be divided into multiple substreams
(e.g., based on video frame boundaries) and pushed by dis-
tinct best-effort nodes. This design provides two benefits:
(i) Transmitting data over multiple physical links makes the
system robust against single-link failures by isolating bottle-
neck links [36, 78]. (ii) Since link performance degradation
typically exhibits temporal and spatial locality, i.e., spanning
multiple consecutive video frames [56], distributing these
frames across different links is promising to mitigate the
impact of such locality.

While multi-source transmission enables the effective uti-
lization of millions of best-effort nodes, the hyperscale im-
poses substantial pressure on the control plane. A critical
challenge lies in the user-substream mapping, which must
dynamically allocate use requests to optimal edge nodes
while navigating real-time network fluctuations and node
instability under massive concurrency. The common prac-
tice adopts global assignment [29, 30, 42], where each user is
mapped according to the centralized control plane optimiz-
ing performance and cost. This method relies on accurate
and timely information about network conditions and node
utilization. However, in scenarios involving unstable and
hyperscale nodes, it is challenging for the global controller
to promptly and reliably obtain such information, making
this method impractical.

We find the opportunity lies in that different components
have different levels of confidence in their network observa-
tions. In detail, the global scheduler has a broad and confident
view of the static and historical attributes of all the best-effort
edge nodes (e.g., ISP, location, connection success rate) while
clients are in the best position to observe and adapt to local
network changes promptly. Mediating between them, edge
nodes infer resource bottlenecks by aggregating subscriber
reports. To this end, we aim to construct a collaborative
control plane, allowing multi-layer components to make
mapping decisions based on their unique views.

Y. Tian et al.

Table 1. Live streaming service overview.
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2.4 Design Challenges

Although our two key insights provide clear guidance for the
system design, we encounter three key practical challenges
when implementing them.

Temporal misalignment in user mapping. During the
user-substream mapping ("user mapping" for short) process,
the distinct layers within the control plane update their per-
spectives at different timescales. The global controller pas-
sively updates node status at the second level, relying on
reports from edge nodes. In contrast, client controllers mon-
itor real-time network conditions at the millisecond (packet)
level. Unlike the above, edge advisers synchronize the status
of subscribers at a hundred-millisecond scale. The variance
in information update timescales results in discrepancies in
end-user mapping decisions across different layers, posing a
significant challenge in integrating these decisions.

Resilient substream ordering at massive scale. Clients
need to reassemble the received video frames from multi-
ple substreams into a single stream in real time, relying
on information about the frame sequence number. How-
ever, mainstream live-streaming protocols such as HLS and
FLV lack such identifiers. Although it is possible to generate
and record frame sequences on an additional central server,
this method has scalability and fault tolerance issues. The
vast computational load from a large number of concurrent
streams (2.47M as presented in Table 1) and the potential
loss of sequence information during server failures introduce
delays and rebuffering. Consequently, ensuring efficient and
robust frame reordering under high concurrency is a signifi-
cant challenge for supporting multi-source transmission.

Cost-reliability trade-off's in retransmission. Packet loss
impacts the QoFE performance of video streaming [6, 46, 56].
One general solution is to retransmit the lost packets from
the sender, i.e., dedicated CDN nodes or best-effort nodes.
However, optimizing loss recovery efficiency while mini-
mizing retransmission cost is complex due to the hetero-
geneous characteristics of best-effort nodes and dedicated
nodes. Figure 3 depicts the distribution of retransmission
success rates and the time spent on retransmission requests
sent to dedicated and best-effort nodes. The results show that
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Figure 4. The High-level Design of RLIVE.

dedicated nodes achieve higher retransmission success rates
and shorter retransmission times due to their reliability, but
incur higher bandwidth expenses. Specifically, the median
retransmission time is 71.1ms for dedicated nodes compared
to 778ms for best-effort nodes, and the success rate is 94.09%
versus 91.44%, respectively.

3 RLi1vE Overview

To address these challenges, we introduce RLIVE, consist-
ing of a multi-layer collaborative control plane and a multi-
source multi-substream transmission in the data plane. Fig-
ure 4 presents the overview of RLIVE.

The control plane ensures responsiveness and dy-
namism by facilitating collaboration among three layers of
components: the global scheduler, client controller, and edge
adviser. The whole mapping involves two main processes:
hybrid user mapping control and real-time node switching.
During each process, the global scheduler is responsible for
recommending nodes based on its global view, and real-time
decision-making is delegated to client controllers, which dy-
namically adjust node selection based on direct observations
of network conditions. Meanwhile, the edge nodes provide
proactive suggestions when they detect QoS degradation or
resource under-utilization.

In the data plane, RLIVE segments each live stream into
multiple substreams at the frame level. Best-effort edge nodes
are equipped with a distributed frame sequencing algo-
rithm and deliver the local sequences alongside data packets
of substreams to clients. The clients then combine the local
sequences into global sequences to ensure the data retrieved
from various nodes is reorganized in the correct order for
seamless playback, eliminating any single point of failure
and guaranteeing scalability. Additionally, we incorporate
an QoE-driven loss recovery mechanism, which introduces
a probabilistic model that captures the success probability of
different loss recovery strategies before the playback dead-
line of frames, enables intelligent selection of the optimal
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Figure 5. Overview of the collaborative control plane.

source for recovering lost data based on real-time assess-
ments of buffer size and network conditions.

Together, RL1VE enables adaptive control under largescale
dynamics and ensures timely, in-order delivery on top of het-
erogeneous and unreliable edge conditions, thereby meeting
the stringent QoE requirements of live streaming.

4 Collaborative Control Plane

This section presents RLIVE’s control plane, which comprises
three levels of controllers with distinct views that collabora-
tively perform user mapping. As shown in Figure 5, it handles
two key tasks: initial mapping at client playout startup (§4.1)
and real-time switching in response to QoS degradation or
under-utilized best-effort nodes (§4.2).

4.1 Hybrid User Mapping Control

When a client initiates a stream, two concurrent tasks be-
gin: pulling the full stream from the original CDN to fill
the initial playout buffer of the client’s player and identi-
fying best-effort nodes for multi-source data transmission.
This parallelism ensures low first-frame latency. The pro-
cess of best-effort nodes identification starts with candidate
recommendations from the global scheduler, followed by
client-driven fine-tuning via active probing.

4.1.1 Global Candidates Recommendation. The global
scheduler faces the challenge of managing a large-scale net-
work with limited real-time visibility. To avoid noise from
outdated or highly dynamic features, it focuses on two cate-
gories: (i) Static Features, including inherent attributes such
as location, ISP, node type (i.e., whether a high-quality node
or not), and connection type. (ii) Temporal Features, includ-
ing attributes like bandwidth utilization and connection suc-
cess rate, which vary across video frames in each session.
To track these features accurately, nodes send lightweight
updates (about 150 bytes) to the scheduler every 5s when
active (i.e., forwarding streams) and every 10s when idle,
striking a balance between freshness and scalability across
millions of nodes.

The goal of the global scheduler is to identify a candidate
list of K nodes that maximize availability while minimizing
cost:



Conference EuroSys ’26, April 13-16, 2026, Edinburgh

aj
arg max —,
ICIsK £ i

where a; and p; represent the availability and cost of node i.
If a node is already forwarding the sub-stream, the cost is
limited to the bandwidth consumed by the client; otherwise,
additional back-to-CDN traffic (i.e., the substream node re-
quests the CDN for the transmission of the requested data)
incurs extra cost.

However, this optimization faces two challenges. Firstly,
top-K recommendations across a large node set are com-
putationally expensive. Secondly, node availability depends
on the requested sub-streams and the clients as well, re-
quiring individualized estimation for the clients. To address
these challenges, the global scheduler first retrieves can-
didate nodes using a tree-based hash structure that filters
them by static features. It then applies a personalized scoring
mechanism tailored to each client, ranking the candidates for
every request based on client-specific and temporal factors
such as proximity, access type, and historical connection suc-
cess rates, thereby prioritizing nodes most likely to deliver
better performance for that client.

The tree-based hash structure aims to support efficient
and priority-aware node retrieval. At each layer of the tree,
specialized hash functions are used to map attribute values,
ensuring fast and precise navigation. The retrieval process
begins by seeking exact matches, traversing from root to leaf
nodes along the full attribute path (stream — ISP — node
type — ... ). If the number of retrieved nodes is insufficient,
the matching criteria are progressively relaxed in reverse
order of priority, allowing for a broader search that still yields
relevant nodes when an exact match cannot be found.

Each candidate node is then assigned a score reflecting its
availability for the specific request:

S(nj,c) = ay * N(nj, ¢) + oz * G(n, ¢) + a3 *R(n, ¢) + a4 * B;,

where n; and c represent the candidate node and client re-

spectively. We summarize the key factors that influence the

availability as follows:

e Same-network Preference (N (n;, ¢)): Nodes in the client’s
local network (i.e., the same BGP prefix) receive priority.

e Proximity (G(n;, ¢)): Geographically closer nodes are pri-
oritized to minimize latency.

e Bandwidth Availability (B;): Nodes with higher residual
bandwidth are favored to ensure stable throughput.

e NAT-Specific Success Rate (R(n;, c)): Nodes with NAT
type with historically higher connection success rates are
weighted more heavily.

Note that the weights («) are different across platforms (e.g.,

Android and iOS) and applications. The candidate nodes

are then sorted by their scores, and the top-K nodes are

forwarded to the client for final selection.

Y. Tian et al.

4.1.2 Local Fine-Tuning. Once the client receives the can-
didate node list from the global scheduler, it begins the fine-
tuning phase. During this phase, the client actively probes
each candidate node to collect real-time performance data,
focusing on dynamic and unstable features. This probing
captures the network’s immediate performance from the
client’s perspective, allowing it to evaluate the current state
of each candidate.

Specifically, the client sends a connection request for the
sub-stream to each candidate node. The first node to respond
successfully is chosen. Note we send application-level con-
nection attempts, rather than Ping, to gauge not only the
latency, but also the available bandwidth capacity. In prac-
tice, we limit probing to at most three candidates, as A/B
testing shows that probing additional nodes yields marginal
improvements (<1%) in success rate while incurring extra
bandwidth and computation overhead linearly.

4.2 Real-Time Edge Node Switching

The inherent instability of best-effort nodes and dynamic
session conditions necessitate frequent end-user re-mapping
to ensure both robust data transmission and maximal node
utilization. RLIVE employs a dual-control design for real-
time edge node switching. The client controller periodically
probes the QoS metrics of both the current publisher nodes
and candidate nodes to identify opportunities for improved
performance, serving as a client-side control. Simultaneously,
the edge monitors for significant QoS degradation or re-
source underutilization, which will trigger immediate edge
node switching, providing proactive suggestions. This dual-
control design balances optimization with proactive adapta-
tion, ensuring minimal service disruption while maintaining
high resource efficiency in dynamic environments.

4.2.1 Client-side Control. The client controller keeps a
focus on maintaining high QoS by continuously monitor-
ing network conditions, especially in terms of RTT. This
mechanism operates on a scheduled basis, enabling clients
to periodically assess their current publishers against the list
of candidate nodes recommended by the global scheduler.
The objective is twofold: to ensure rapid failover upon sud-
den QoS degradation or edge node outages, and to maintain
steady optimization under stable network conditions. The
switching logic relies on the following condition to deter-
mine if a switch should be initiated:

RTTey > min (RTTl + tchange):

ieCandidates
where RTT,,; and RTT; means the RTT between the client
and the publisher node and the candidate node i respectively;
tchange accounts for the switching costs, including reconnec-
tion and initialization delays. Note that the candidate nodes
are recommended and updated by the global scheduler.
When this condition is met, the client identifies a better
candidate node (i.e., the node with the lowest RTT among the



RLIVE : Robust Delivery System for Scaling Live Streaming Services

candidates) and initiates a switch. This process immediately
enhances QoS by transitioning to a better-performing node.

4.2.2 Proactive Suggestions. The best-effort nodes play a
pivotal role in enhancing both the cost-efficiency and the QoS
by acting as an active adviser that complements the client-
side control. Specifically, this proactive control is driven by
two distinct objectives: cost-efficiency and QoS.

Cost-aware Trigger. Best-effort nodes continuously moni-
tor their resource utilization to identify potential inefficien-
cies. When the sliding average of resource utilization, fjnode,
drops below a predefined threshold (), the system detects
underutilization and recommends a switch to reduce costs.
Additionally, the best-effort node contacts the global sched-
uler to double-check whether the average utilization of the
forwarding stream (fstream) also falls below the threshold.
If both conditions are met, the best-effort node proactively
suggests a switch to the client. This mechanism reduces
back-to-CDN traffic by redistributing requests away from
underutilized nodes, thereby saving costs. In our deploy-
ment, nodes re-evaluate their utilization every 10 seconds
and only advertise themselves to clients when underloaded.
This design maintains utilization above 60% for over 70% of
active nodes and scales to millions of nodes in deployment.

QoS-Aware Trigger. It tackles scenarios where link issues
impact individual clients. A best-effort node may have high
QoS for most, but a specific client can face degraded per-
formance. The node, having a broader QoS view, can spot
potential degradation before client-side control. Specifically,
best-effort nodes calculate the Z-score of each connection’s
QoS metric relative to the node’s overall connections to de-
tect such cases. Formally, the best-effort nodes operate as
follows: (i) The QoS metric for each client connection is eval-
uated, and its Z-score is computed: z; = %, where x; is
the QoS metric of connection i, and p and o represent the
mean and standard deviation of QoS metrics across all con-
nections, respectively. (ii) Connections with Z-scores in the
top 5%, indicating significant deviations from the average,
are flagged as potential outliers. (iii) When these outliers are
detected, the node proactively sends edge node switching
suggestions to the affected clients. This approach ensures
that isolated link-quality issues are addressed on time.

Notably, once a client receives a switch suggestion from
the publisher, it immediately enters the client-side control
to evaluate if better nodes are available for switching. If
no better node is identified, the switch suggestion is not
executed to avoid potential QoS degradation. In this case, the
client requests the global scheduler to update the candidate
node list for potentially better candidates.

5 Robust Data Transmission

RL1vE divides each live stream into multiple sub-streams
, which are delivered by best-effort edge nodes. It ensures
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Figure 6. Distributed transmission overview.

robust data transmission under scale through two key mech-
anisms: (i) distributed frame sequencing that leverages the
computational capabilities of best-effort nodes to reorder
data accurately, and (ii) a QoE-driven loss recovery strategy
that dynamically selects the optimal timing and source for
retransmission.

5.1 Multi-source Multi-substream Transmission

After end-user mapping determines substream sources,
clients send subscription requests to the assigned best-effort
nodes. Upon receiving a request, an best-effort node adds
the client to its substream-specific subscriber list. If the
node is not already forwarding the requested substream,
it subscribes to the CDN, which delivers the stream as com-
pressed Network Abstraction Layer Units (NALUs) encoded
using standard codecs (i.e., H.264/AVC or H.265/HEVC). Each
NALU encapsulates a complete video frame or a decodable
slice. For simplicity, we refer to NALUs as frames throughout
the paper.

Figure 6 illustrates the overview of the multi-source multi-
substream transmission process. Traditional chunk-based
delivery (e.g., multi-second segments in HLS) incurs higher
end-to-end latency and potential head-of-line blocking, as
best-effort nodes must first accumulate the entire chunk be-
fore forwarding it to the client [41, 52]. In response, RLIVE
adopts fine-grained frame-level transmission to improve re-
sponsiveness and reduce latency. However, fine-grained de-
livery also introduces new challenges: frames are scattered
across nodes and must be accurately reordered at the client
to ensure smooth playout.

To address this, RLIVE introduces a frame chain abstraction
to ensure in-order reconstruction of frames across hetero-
geneous nodes in a distributed way. Specifically, the CDN
provides complete frames for the requested substream and
headers of other substreams within the same stream. Upon
receiving a complete frame, the best-effort records the asso-
ciated frame header and updates its local frame chain. Mean-
while, the node segments the frame into fixed-size packets,
embeds the local frame chain, and pushes packets sequen-
tially to subscribers via UDP. This ensures in-order delivery
in the absence of packet loss.

At the client side, once all packets for a frame are received,
the client checks whether the frame can be added to the or-
dered frame buffer, which is continuously consumed by the
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player, based on the global frame chain it maintains, which
is updated by aligning distributed local chains (§5.2). Accord-
ingly, complete frames are buffered in sequence for playout,
while missing data triggers QoE-aware recovery(§5.3).

5.2 Distributed Frame Sequencing

We present a novel, scalable frame sequencing algorithm
that distributes the computation and recording of frame se-
quences across distributed edge devices. This design elimi-
nates potential bottlenecks and scales seamlessly with the
increasing number of streams, enhancing the robustness
of frame sequencing. Specifically, RLIVE allows best-effort
nodes to distributively generate local frame sequences, which
are transmitted alongside regular data packets. Clients then
use these local sequences to construct and continuously up-
date the global frame sequence across all substreams. We
illustrate the process of local frame sequence generation and
global chain updating in Figure 7.

Local frame sequence generation. We design a lightweight
frame footprint to uniquely identify frames and chain them
for global sequence notification. Using the hash of full frame
data for uniqueness requires best-effort nodes to pull all
frames from different sub-streams, increasing cost and E2E
latency as the footprint can only be calculated after the whole
frame is received. Thus, we introduce a novel frame foot-
print using only frame headers, designed to ensure both
the uniqueness of each frame and the ability to validate the
frame sequence.

As shown in Figure 7(a), the footprint comprises three
components: decoding timestamp (dts), a CRC value embed-
ding current and prior two headers to avoid conflicts, and
CNT for packet count. This method focuses on frame head-
ers rather than entire frame data, striking a balance between
efficiency and uniqueness.

When forwarding packets to subscribers, the best-effort
nodes are responsible for adding local frame chains, formally
footprint; s = footprint;_5,, = ... = footprint;_,, into
the packets of the frame i. Specifically, we set the length of
the frame chain (9) as 4.
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Combining local frame chains. Upon receiving a local
frame chain from an best-effort node, the client attempts
to integrate the local chain into the global frame chain. We
illustrate the combining process in Figure 7(b), where the
client maintains a global chain with a length of 3, and two
best-effort nodes transmit two different local chains. Though
one of the local chains is lost, the client can successfully
combine the second chain into the global chain.

We summarize the algorithm that tries to match a single
local chain on the global chain in Algorithm 1. The client first
verifies continuity by checking if IChain contains the termi-
nal frame of gChain (lines 2-8). Upon successful alignment,
unmatched frames from [Chain are appended to gChain with
UNLINKED status. Each appended frame undergoes a CRC to
validate that the order of gChain is consistent with what is
recorded in the frame footprint. Frames that pass validation
are marked as LINKED (lines 15-17). Any validation failure
triggers the removal of all UNLINKED frames from gChain,
preserving chain integrity (lines 19-21).

The client also manages a list of under-matched chains
(misMatchChains), which have not been matched with
the global chain due to the absence of preceding frames.
When gChain expands via a successful merge, the client
re-evaluates misMatchChains entries against the updated
gChain, removing fully integrated or now-compatible chains.

Algorithm 1: Try on Matching Chain

1 maxLinkedFrame « LastElement(gChain);

2 foreach frame € IChain do

3 if findCont then

4 | gChain.push_back((frame,UNLINKED));
5 end
6
7
8
9

if frame = maxLinkedFrame then

findCont « True;

expectLinkFramefootprint < NextFrame footprint ;

end

10 end

11 if not findCont then

12 ‘ return False;

13 end

14 while not the end of gChain do

15 if expectLinkFramefootprint € dataPool and the CRC

validation succeed then
set the link status as LINKED;
expectLinkFramefootprint < next frame € gChain;

18 end

19 else

20 Push out the unlinked frames fromgChain;
21 return False;

22 end

23 end

24 return True;

5.3 QoE-driven Sub-stream Recovery

When data loss occurs, the system must decide whether to
retrieve missing packets from either the cost-efficient best-
effort nodes or the more reliable dedicated nodes. Our idea
is to prioritize best-effort nodes for recovery when the lost
data can be successfully retrieved before the frame buffer is
exhausted, thereby minimizing bandwidth costs. However,
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if the buffer nears depletion and best-effort recovery risks
failure, the system seamlessly switches to the dedicated ones
to prevent interruptions. We modeled data loss recovery as a
state-aware decision-making framework, with a probabilistic
loss function that integrates bandwidth cost, the probability
of frames being unplayable, and the impact of frame loss.

Action Space. For a retransmission list (i.e., consisting of
the incomplete frames) with m frames, actions form an m-
dimensional vector A = (ay, az, ..., am) with four recovery
options per frame:: (i) Packet Recovery from best-effort nodes
(a; = 0). We employ both timeout-based and fast retransmis-
sion mechanisms. Out-of-order packets indicate data loss
and the client promptly triggers a fast retransmission re-
quest. Otherwise, the client initiates a standard timeout-
retransmission process. (ii) Frame recovery from dedicated
nodes (a; = 1). Clients can also promptly retrieve missing
frames from a dedicated node while subsequent frames con-
tinue to be pulled from best-effort nodes. (iii) Sub-Streams
switching back to dedicated nodes (a; = 2). If the transmission
path of a specific sub-stream suffers from poor QoS, result-
ing in the loss of multiple consecutive frames, repeatedly
requesting individual frames from the dedicated node be-
comes inefficient. To address this, we enable the client to
switch the publisher of the affected sub-streams, allowing
it to pull the sub-streams directly from the dedicated nodes.
(iv) Pulling the Full Stream from dedicated nodes(a; = 3). In
extreme cases, we allow the client to pull the entire stream
from dedicated nodes, ensuring reliable delivery when other
recovery methods fail to maintain acceptable QoS.

State Representation. To decide which action to take, we
mainly focus on two primary categories of metrics: buffer
states (i.e., whether the buffer is too small to maintain smooth
playout) and network states (i.e., whether the QoS is too
poor). Specially, we define the state
S= (E §: Xsuce Xfail: L)

7 (m-dim) indicates the frame playout deadlines. s (m-
dim) where s; represents the data size of frame i. X, =
{(*suce,is Nsuce,i) } records the number of successfully retrans-
mitted packets within frame i (xg,cc ;) and the total number of
retransmissions (nsycc,i), whereas Xgqi1 = {(Xfairi> nfaiti) }
records the number of packets that have not been success-
fully retransmitted yet within frame i (xf4;;,;) and the total
number of retransmissions (nf4z,;). L records the time taken
to retrieve frames from dedicated nodes.

Loss Function. To evaluate the efficiency of each action, we
adopt a probabilistic loss function that integrates bandwidth
cost, the probability of frames being unplayable, and the
impact of frame loss: m
Loss(A) = cost(A) + A Z P(F;|a;, S) = risk(F;).

i=1
The first item, cost(A), measures the bandwidth cost intro-
duced by action A and the second item measures the impact
of executing action A under state S on the smoothness of
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video playout. For each frame, we evaluate the probability
that not all of its packets have been received before its play-
back deadline (P(F;|a;, S)), as well as the risk of the frame
being unplayable (risk (F;)). Due to the reference dependency
between video frames, the loss or delayed arrival of packets
may cause the subsequent video frames to fail to be decoded
successfully. Accordingly, the risk of losing an I-frame is sig-
nificantly more severe than that of other frames, as I-frames
can decode multiple other frames. In our implementation,
risk(F;) is only related to the frame type, and a higher con-
stant value is set for the I-frames.

Given the state S and action a;, we model the probability
respectively for best-effort nodes (a; = 0) and dedicated
nodes (a; > 1). For dedicated nodes, which retransmits entire
frames in single attempts with stable transmission time, the
failure probability is derived from historical latency records
L as:

P(Fl | a,—,S) =1- FN(Ti), a; > 1

, where Fy(l) = # 2L I(l; < 1) represents an empirical

distribution function (EDF) for the time spent on retrans-

mission from dedicated nodes. For best-effort nodes, which

requires packet-level retransmissions, failure probability de-
Xsucc,i

pends on the per-packet success rate p = =t the number

AE]
Nsucc,i

of missing packets xf4;1;, and feasible retries within z;:
P(Fi|ai=0,8) =1—(1—(1—p)¥ )Y

Decision. After the loss function is determined, we decide
which action to execute in a straightforward way. In other
words, we select the action with minimum loss:

Final Action = arg ngn Loss(A)

6 Implementation

Best-effort Nodes Control. The best-effort nodes used in our
system are provided by third-party vendors as bare metal ma-
chines running Linux, over which we have full root access-
including control over the kernel, network stack, and run-
time environment. This level of access allows us to deploy
lightweight containerized agents and monitoring tools, and
to support multiple co-located services via virtualization.
Such flexibility enables fine-grained scheduling, real-time
resource management, and seamless integration with the
global control plane.

Frame Delivery. A live stream comprises a continuous
sequence of frames, formally represented as fo, fi, f2, ...
For generality and simplicity, we adopt a static round-
robin partitioning method according to the dts field to seg-
ment the stream into K substreams as follows: ssid(f;) =
Hash(dts(f;)) mod K. To prevent several consecutive large
frames from being assigned to the same substream and caus-
ing bursty traffic, we employ the FNV-1a hash function to
ensure a uniform distribution.
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Figure 8. Views and viewers participating in A/B tests.

Minimal Modifications on the CDN Side. In our system,
the changes to CDN include: (i) supporting forwarding both
substreams and full streams. (ii) supporting frame-level re-
covery indexed by dts. Accordingly, the CDN-side implemen-
tation demands fewer than 100 lines of code modifications in
our system, primarily adding lightweight dts-based routing
logic, ensuring compatibility with both legacy and modern
CDN frameworks, thus guaranteeing broad generalization.

Subscribe-Push Streaming for Low Latency. We adopt
a Subscribe-Push paradigm to minimize latency, aligning
with prior low-latency designs [39, 78]: clients subscribe
substreams to best-effort nodes, which then segment content
into fixed-size packets and push them immediately without
performing traditional control functions (e.g., loss detection
or congestion control).

7 Experiments

RLIVE has been deployed in ByteDance CDN with approxi-
mately one million best-effort nodes since 2021, enabling the
scaling of multiple mainstream live streaming applications,
such as Douyin. In this section, we evaluate RLIVE’s perfor-
mance in our production environment. We first present the
results of A/B tests when RLIVE is approved to be online,
comparing the performance with dedicated CDNs. Then we
evaluate RLIVE with a single-source transmission scheme
to prove its enhanced robustness and scalability. Finally, we
conduct a deep dive on the components of RLIVE.

7.1 Large-scale A/B Tests

7.1.1 Setting. We conducted two A/B tests during sepa-
rate time periods, each encompassing 100% of Douyin Lite
android users, grouped by their unique IDs.

Evening Peak vs. Dedicated CDN Only. In the first A/B test,
users in the control group accessed full streams directly from
dedicated CDN nodes, while users in the test group were
allowed to pull streams through RLIVE during evening peak
hours (8 p.m.—11 p.m.). Notably, users in the test group ini-
tially retrieved full streams from the CDN nodes. The system
switched to RLIVE only when the following conditions were
met: (i) The stream popularity exceeded a predefined thresh-
old to maximize the benefits of multi-substream transmission.
(ii) Users’ viewing times exceeded a certain threshold (30
seconds in our deployment) to avoid frequent switches.

Double Peak vs. Evening Peak. After the successful deploy-
ment of RLIVE during evening peaks, we hypothesized that
extending its usage to noon peaks would yield additional
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benefits. Thus, in the second A/B test, users in the control
group accessed streams as described for the test group in the
first A/B test. In contrast, users in the test group were permit-
ted to pull streams through RL1vE during both noon peaks
(11 am.-2 p.m.) and evening peaks. All other configurations
were identical to the first A/B test.

Each A/B test lasted two weeks, involving billions of
views daily. Figure 8 shows the differences between the test
and control groups in terms of view count and viewer count
for both tests. The observed differences are on the order of
0.01%, demonstrating the fairness of these A/B tests.

7.1.2 Robust QoE Performance. We evaluate RLIVE by
analyzing QoE metrics recorded on client devices. Figure 9
illustrates the rebuffering times per hundred seconds, video
bitrate, and end-to-end latency. Each subplot shows the daily-
averaged differences between the test and control groups in
the two A/B test sets for these metrics.

First, Figure 9(a) compares the rebuffering times between
the two groups, with differences expressed as percentages
(calculated relative to the control group). The results demon-
strate that allowing clients to pull streams through RLIVE sig-
nificantly reduces rebuffering times. During evening peaks,
rebuffering times decreased by approximately 15% when
clients utilized RL1vE. This improvement is particularly im-
pactful as CDN servers often encounter bandwidth bottle-
necks during peak hours [78], potentially exacerbating re-
buffering events. By leveraging best-effort nodes, RLIVE
successfully scales the existing CDN and alleviates CDN
bandwidth pressure, while its multi-source, multi-substream
mechanism ensures stable and reliable data delivery.

Additionally, a further 10% reduction in rebuffering times
was observed when clients were allowed to pull streams
through RL1VE during both evening and noon peaks. This
moderate improvement suggests that, while noon rush hours
impose bandwidth pressure, the strain on CDN resources is
less severe compared to evening peaks. Consequently, clients
in the control group experienced fewer rebuffering events
during noon peaks, resulting in slightly reduced gains from
RL1VE during this period.

Second, Figure 9(b) presents the comparison of video bi-
trate. A similar trend to rebuffering times is observed: during
evening peaks, the bitrate increases by approximately 10.5%
when clients use RL1vE, while it rises by around 7% when
clients use RLIVE during both noon and evening peaks. This
indicates that RLIVE helps prevent the CDN from reducing
video bitrate to accommodate more viewers during rush
hours, ensuring a better-quality streaming experience.

Third, Figure 9(c) highlights the end-to-end latency and
we can see a 4-6% increase in latency in both tests. This is
expected, as adopting RLIVE introduces an additional pro-
cessing time between the source and the client, and time
is required to reconstruct multiple substreams. Fortunately,
the increase remains well below the acceptable threshold for
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Figure 9. A/B test results.

Table 2. Equivalent traffic(EqT) reduction. Test 1: Evening Peak
vs. CDN Only; Test 2: Double Peak vs. Evening Peak.
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Figure 10. Energy consumption comparison.
live streaming (2s for ultra-low latency requirements [57]).
Nevertheless, this observation underscores the importance
of balancing rebuffering reductions with potential latency
trade-offs. Effective latency management remains critical for
optimizing user experience in live streaming scenarios.

7.1.3 Cost Reduction. We utilize equivalent traffic (EqT)
to evaluate the cost reduction achieved by RLIvE. EqT is de-
fined as the product of the normalized unit cost of resources
and the volume of traffic, offering a direct measure of the
traffic saved. In our A/B tests, EqT is used in place of band-
width cost, as some edge resources are billed based on their
monthly percentile bandwidth, making it difficult to directly
assess the impact on final costs within the short duration of
the tests.

Table 2 shows the EqT comparisons between the test and
control groups across the two A/B tests, respectively. The
results indicate a 7.99% reduction in evening EqT during the
first test and a 6.16% reduction in non-evening EqT during
the second test. These findings underscore RL1vE’s ability to
significantly reduce bandwidth costs by leveraging lower-
cost best-effort nodes. A detailed comparison with the single-
stream scheme, proving the scalability of RL1vE, will be
provided in Section 7.2.

7.1.4 Energy Consumption. In addition to evaluating
QoE performance and bandwidth cost, it is crucial to assess
the energy consumption of RLIVE on the client side. Fig-
ure 10 reports metrics including CPU and memory usage,
temperature, and battery consumption of the clients. The
results show that RLIVE incurs a marginal increase of 0.58%-
0.74% in CPU, 0.21%-0.22% in memory, 0.02%-0.03% in device
temperature, and 0.13%-0.15% in battery consumption.
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To minimize these increases, we optimized the implemen-
tation of RLIVE by improving data structures, reducing redun-
dant copy operations, and enhancing the data transmission
protocol to eliminate unnecessary data exchange. Conse-
quently, the energy consumption impact is minimal, and no
negative feedback related to energy usage was received from
users during the A/B tests.

7.2 Multi-source Multi-substream Transmission

7.2.1 Settings. Our system categorizes best-effort
nodes into two tiers: Best-effort nodes with limited
bandwidth/stability employ RLIVE’s multi-source multi-
substream transmission (Multi), while high-capacity
nodes deliver single-source streams (Single) directly from
CDN edges. Despite a 10:1 traffic volume ratio (Multi vs.
Single), both approaches leverage best-effort nodes with
an additional network hop to the original CDN. This setup
enables a direct comparison of Multi’s robustness and
scalability against Single.

7.2.2 Robustness Enhancement. As previously detailed
in Section 2.2, within a network environment characterized
by weaker stability, Multi is likely to exhibit greater resilience
to jitter and potentially lower latency. We gathered statis-
tics during peak hours (7 p.m.-11 p.m.) over the course of a
week, from December 23rd to December 29th, in a production
environment. Figure 11(a) presents the average E2E latency
difference between Multi and Single. The results indicate that
Multi attains a 12%-30% reduction in latency, thereby vali-
dating its real-time performance capabilities. Furthermore,
Figure 11(b) showcases a comparison in terms of rebuffering
times per hundred seconds, rebuffering duration per hundred
seconds, and bitrate. The data reveals a substantial reduction
in rebuffering occurrences and an improvement in bitrate,
highlighting the enhanced robustness of RLIVE.

7.2.3 Scalability Analysis. In Section 2.2, we also pointed
out the limited traffic expansion rate. We posit that the adop-
tion of Multi can enhance this ratio, and consequently, im-
prove the ability to scale CDNs. Figure 11(c) depicts the traffic
expansion rate in the peak hours for one day and we see that
Multi transmission has nearly doubled the traffic expansion
rate. Additionally, since the bandwidth capacity of best-effort
nodes has not reached saturation, and during scheduling, we
tend to allocate nodes with high connection success rates
and those within the same local area network, rather than
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Figure 12. Global control plane statistics.
Table 3. Centralized vs. distributed frame sequencing

Retransmission Rebuffering Rebuffering
Rate(%) Times Duration(ms)
Red. (%) 25.50 3.49 5.96

solely aiming to maximize the traffic expansion rate. As a
result, when meeting more demands, there remains signif-
icant potential for further improving the traffic expansion
rate under Multi transmission.

7.3 Component-wise Evaluation

7.3.1 Control Plane Evaluation. Due to the large num-
ber of viewers, the QPS (Queries Per Second) of the global
scheduler reached several million during the evening peak
period (as shown in Figure 12(c)). Under such pressure, pro-
viding responsive edge node recommendations becomes a
challenge. Figure 12(a) illustrates the distribution of the time
spent on node recommendations, showing that the median
time is 58.2ms, with the 90th percentile value at 111.5ms.
This relatively low response time reflects the efficiency of
the simple strategy employed by the global scheduler. Note
that clients simultaneously initialize their stream pulls from
the CDN, which is fast to connect, and query candidate nodes
from the global controller.

However, as shown in Figure 12(b), up to 35% of the rec-
ommended nodes may be invalid—either due to poor quality
or have reached their capacity, prompting clients to make
finer-grained decisions based on their local views.

7.3.2 Frame Sequencing Evaluation. During the evolv-
ing iterations, we adopted a centralized approach for frame
sequencing. This approach works as follows: Firstly, we uti-
lize several high-quality best-effort nodes, which we refer
to as “super nodes”. These super nodes pulled full streams
from the CDN edge, segmented them at the frame level, and
computed CRC values to establish sequence orders. Other
best-effort nodes queried super nodes periodically to embed
these orders into data packets. However, this method proved
unscalable and fragile. As concurrent streams grew, super
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Figure 13. A/B test result under RTM.
Table 4. FIFA case study: QoE of RL1vE vs. CDNs
Bitrate E2E lat.
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‘ #Views
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Rebufferings
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Diff. (%)
nodes became bottlenecks, requiring constant expansion.
Additionally, super node failures caused significant delays
in recovering sequence chains, degrading system reliability.

In contrast, our distributed frame sequencing method elim-
inated these issues. By enabling best-effort nodes to indepen-
dently generate sequence orders based on the frames they
transmit, we ensured synchronization between data packets
and sequence orders without relying on super nodes. This
approach not only improved robustness but also enhanced
performance. As shown in Table 3, the distributed method
reduced the retransmission rate by 25.5%, while rebuffering
frequency and duration per hundred seconds decreased by
3.49% and 5.96%, respectively. These results clearly demon-
strate the superiority of the distributed approach in scalabil-
ity, reliability, and overall QoE.

7.3.3 Case Study: 2022 FIFA World Cup. We further
validate the scalability of RLIvE through a case study of the
2022 FIFA World Cup, held from November 20 to Decem-
ber 18, 2022. We select this event because mega-scale live
broadcasts naturally stress delivery systems with massive,
short-term bandwidth surges, which are difficult to handle
by provisioning additional dedicated CDN capacity due to
the time and cost required. In contrast, RLIVE can rapidly
mobilize existing best-effort resources to meet such bursts
in demand.

During the event, the system sustained 23.8 Tbps peak
bandwidth, 1.7 million QPS in node recommendation, and
up to 710k concurrent viewers per stream. To evaluate QoE
under this workload, we compared RLIVE with traditional
CDNss. Table 4 shows results from the Dec. 4 match, demon-
strating that RLIVE leverages best-effort resources to handle
unprecedented demand while maintaining CDN-grade QoE.

7.4 Discussion

Protocol Support. RL1vE adopts FLV as the primary CDN-to-
edge protocol (i.e., between the CDN and best-effort nodes)
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due to its low latency and widespread deployment in produc-
tion pull-based streaming. As shown in Section 7.1, RLIVE
achieves QoE on par with CDN-only delivery under FLV. To
demonstrate protocol generality, we also prototyped RLIVE
with RTM, a WebRTC-based protocol described in [85]. Fig-
ure 13 shows the relative QoE difference between the RTM-
only baseline and the RTM+RLIVE configuration, with RTM-
only as the control group. A/B tests reveal a marginal in-
crease (~1%) in E2E latency, while bitrate and rebuffering
remain nearly unchanged. Notably, RTM+RLIVE supports
the same user load with less CDN bandwidth by leveraging
best-effort edge resources. These results validate that RLIvE
generalizes effectively across CDN-to-edge protocols.

Fallback Threshold Tradeoff. To absorb packet reorder-
ing, RLIVE uses a client-side playback buffer with a fall-
back threshold: when the buffer occupancy drops below this
threshold, the client switches to CDN full-stream delivery.
We evaluate different threshold settings and find that low-
ering from 500 ms to 400 ms causes only minor rebuffering
overhead, while further reducing to 300 ms leads to a sharp
QoE degradation. We therefore adopt a 400 ms threshold in
production to balance latency and playback smoothness.

8 Discussion
8.1 Deployment Experiences

During the actual deployment of RLIVE, we have accumu-
lated a series of valuable experiences.

Fine-Grained NAT Classification for Improved Trav-
ersal. Successful NAT traversal is crucial for effective best-
effort resource use. To prevent overload on public-IP nodes
or easily punched NATs, we target hard NAT types like Port-
Restricted and Symmetric NATs. Beyond the RFC 5780 classi-
fication [44], our deployment uncovered two new behaviors:
(i) incremental port mappings, and (ii) sequential firewall
filtering. Building on these insights, we refine NAT types
and develop targeted techniques such as port prediction and
asymmetric TTL tuning to improve traversal rates. These
optimizations expand the usable node pool by approximately
22%, and we believe they offer broader benefits for enhancing
P2P connectivity in heterogeneous environments.

Accelerating Frame Recovery via DNS Bypass. To reduce
recovery latency, best-effort nodes embed the publisher’s
IP in regular data packets, enabling clients to bypass DNS
lookups and establish direct connections. When losses per-
sist, clients may switch to pulling streams from dedicated
nodes. In both cases, IP propagation speeds up redirection
and recovery.

Handling Heterogeneous Bottlenecks with Quota-Based
Availability. We find advertised bandwidth of heteroge-
neous best-effort nodes is far less reliable than dedicated
servers. Moreover, bandwidth is not always the bottleneck;
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nodes can encounter limits in CPU, memory, or other re-
sources even with low bandwidth utilization (~10%). This
heterogeneity complicates capacity planning and resource
allocation. To address this, each node logs its bottleneck lo-
cally during stress testing and runtime monitoring. We then
evaluate node availability using a quota-based approach,
which considers each node’s specific bottleneck and multi-
dimensional constraints, rather than relying solely on band-
width utilization.

When Optimality Hurts Scalability. While end-user map-
ping optimization can theoretically improve scalability and
user experience, our deployment experience in hyperscale,
heterogeneous environments tells a different story. In prac-
tice, aggressively pursuing precision yields only marginal
gains but introduces instability—stemming from complex
optimization logic and imperfect inputs such as delayed up-
dates, uneven observability, and aggregation errors. We find
that favoring a more responsive, resilient strategy over ex-
haustive optimization leads to a more stable and scalable
system in the real world.

Applicability to VoD. While our system is designed for
live streaming, many of its components generalize naturally
to VoD scenarios. In particular, the collaborative control
plane can be directly reused for source selection to improve
throughput. Moreover, multi-source delivery is even simpler
in VoD, as the content is pre-generated and can be pre-sliced,
eliminating the need for runtime stream reassembly.

8.2 Lessons Learned

Our approach supports broader edge-based solutions that
offload both data delivery and computation to edge nodes
while preserving stringent QoE guarantees. We summarize
our lessons learned below.

Multi-layer feedback for fine-grained control. The global
scheduler initially relied on aggregated statistics from edge
nodes to reduce control overhead. However, this aggrega-
tion cannot capture local performance fluctuations in real
time, often resulting in overestimating the quality of poor-
performing nodes. To address this, we adopt two strategies:
global explore-exploit balancing and edge-driven lightweight
feedback. At the global level, the scheduler mixes histori-
cally good nodes (exploit) with idle or underused candidates
(explore) to avoid overloading inaccurate nodes. At the edge,
we shift more control and failure detection responsibilities
via simple heuristics like locally blacklisting persistently
failing nodes. This combination of global exploration and lo-
calized feedback has proven robust and practical in dynamic
environments.

Distributed transmission control for robustness. As the
system scales, centralized control channels become over-
loaded and fragile. In our early design, we followed the com-
mon practice of simplifying ordering logic by computing
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frame-ordering metadata at a centralized server and transmit-
ting it separately from the data payload. However, failures in
the centralized metadata channel prevent clients from recon-
structing the stream, leading to significant playback delays.
We thus embed the contextual metadata directly into data
packets, which are distributed alongside the payload by best-
effort nodes. This allows clients to reconstruct streams inde-
pendently, without relying on a centralized metadata path,
significantly improving resilience. Our experience points
to a broader principle for hyperscale edge-assisted systems,
where centralized channels often become bottlenecks: em-
bedding contextual control information into the data path
enhances robustness by eliminating single points of failure.

QoE-Driven Aggressiveness with Controlled Fall-
back. Our system prioritizes user experience and adopts
proactive fallback strategies guided by real-time QoE
metrics. We aggressively utilize the dedicated CDN to
deliver the initial GoP for fast startup, recover lost frames,
and support playback when the client buffer level is low.
These strategies provide a controlled and reliable way
to safeguard QoF, even when unstable edge resources
are involved, at the cost of occasional redundancy (e.g.,
duplicate packets from both CDN and best-effort nodes). To
balance performance and efficiency, we also explore ways to
reduce unnecessary redundancy[23].

8.3 Open Questions

Several open directions remain. First, the streaming latency
can be further reduced by detecting causes of delayed or miss-
ing frames, such as link degradation or edge-side processing
delays. Once identified, the system could react in real time
by adjusting source selection, retransmission, or scheduling,
thereby improving playback continuity. Second, congestion
control algorithms (CCAs) for multi-source multi-substream
relays will enhance transmission between best-effort nodes
and clients. Third, RLIVE currently applies static substream
partitioning via frame-level hashing, which is simple but
lacks flexibility for variable frame size or importance. Adap-
tive scheduling could direct critical or large frames to more
stable nodes, reducing tail latency. Finally, exploring RLIVE’s
applicability to other latency- and QoE-sensitive workloads,
like cloud gaming and 360-degree video, is also worth further
investigation.

9 Related work

Live streaming optimization. Crowd-sourced live stream-
ing (CSLV) development has driven decade-long opti-
mization efforts to achieve millisecond latency and high
bandwidth, addressed through inject-side [33, 61, 80] and
distribution-side [8, 10, 29, 30, 45, 48, 63, 71, 81] enhance-
ments. Growing live traffic has spurred bandwidth cost-
saving strategies: P2P-CDN hybrid architectures [68, 73, 74,
76-78] and underutilized resource exploitation [62, 67, 83],
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alongside dedicated optimization frameworks [11, 65, 84]. In
contrast, RLIVE’s goal is to take full advantage of cheaper
best-effort nodes to scale existing live CDNs with robust and
competitive QoE.

Multi-source transmission. Recent multipath schemes
(MPTCP [19, 25, 58, 79], MPRTP [50, 60], MPQUIC [16, 89])
adopt one-source-to-client patterns to enhance QoE. Unlike
them, RLIVE proposes a multi-source-to-client architecture
for robustness. Existing multi-source works [9, 15, 78] rely
on content redundancy, while we propose no-redundancy
transmission with QoE-driven loss recovery. Some recent no-
redundancy studies 3, 34, 59, 64, 66, 67, 83, 86] target VoD via
receiver-driven request-push mode. RLIVE’s redundancy-free
transmission differs from these approaches and innovates
with a publisher-driven subscribe-push paradigm, specifi-
cally optimized for live streaming’s ultra-low latency con-
straints and ultra-high QoE demands.

Hybrid control plane. Centralized traffic engineering (TE)
controllers [1, 5, 12, 20, 29, 30, 38, 42, 43, 49, 53, 69] typi-
cally operate on large timescales (minutes/hours) for time-
intensive optimizations. Distributed approaches [18, 22,
31, 47] enable local decision-making to minimize cross-
domain data transfer and control latency. Hybrid architec-
tures [48, 70] combine centralized optimization with decen-
tralized agility but assume stable and limited infrastructure.
In contrast, RLIVE’s collaborative control plane addresses
the instability and hyper-scale of edge controllers, ensuring
robust hybrid control.

Peer-assisted content distribution. Early work [3, 34, 86]
applied peer-assisted designs to non-real-time content dis-
tribution, focusing on locality-aware peer selection for ISP
cost reduction [4, 7, 13, 32] and network coding for block
propagation [21, 37]. While both peer-assisted systems and
RL1VE leverage idle edge resources, early approaches were
cost-driven with limited concern for QoE, whereas RLIVE is
explicitly QoE-driven to deliver CDN-grade performance.

10 Conclusion

This paper presents RLIVE, a robust and scalable live stream-
ing delivery system. RLIVE introduces a multi-layer collabo-
rative control plane and a redundancy-free multi-source data
plane, aiming to scale current CDNs through best-effort edge
nodes while ensuring robustness. Successfully deployed in
ByteDance CDN for over 3 years, RLIVE yields significant
improvements in QoE, which demonstrates the transforma-
tive potential of multi-source streaming, paving the way for
more resilient and cost-effective live content delivery.
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