
Predictable Real-Time Video Latency Control with
Frame-level Collaboration

Jiaxing Zhang§,¶, Qinghua Wu§,¶,‡�, Gerui Lv§,¶, Wenji Du¶,†, Qingyue Tan§,¶

Wanghong Yang†, Kai Lv§,¶, Yuankang Zhao§,¶, Yongmao Ren†, Zhenyu Li §,¶,‡, Gaogang Xie ¶,†
§Institute of Computing Technology, Chinese Academy of Sciences, ¶ University of Chinese Academy of Sciences
†Computer Network Information Center, Chinese Academy of Sciences, ‡ Purple Mountain Laboratories, China

Abstract—Real-time video (RTV) systems place high demands
on ultra low-latency (i.e., less than 100 ms). However, our large-
scale measurements reveal that a significant portion of users still
experience high video frame latency due to bandwidth jitters.
Existing solutions attempt to mitigate this issue by lowering the
sender’s future video frame encoding bitrate. Nevertheless, as
shown in our controlled experiments, they fail to drain existing
packets queued on the bottleneck node (i.e., the 5G base station
and Wi-Fi access point), still suffering from high tail latency as
bandwidth decreases.

In this paper, we propose Co-RTV, a collaborative RTV system
that achieves predictable latency control. Specifically, Co-RTV
enables endpoint-network collaboration between the bottleneck
node and the sender. The collaboration speeds up the release of
packets queued at the bottleneck node and facilitates accurate
latency control at the RTV sender through scalable QoE-driven
flow control. Extensive experiments in both emulated networks
and a 5G testbed demonstrate the superior performance of
Co-RTV, with tail latency reductions of 69.1% and 70.5%,
respectively.

Index Terms—real-time video, low latency, collaboration

I. INTRODUCTION

Real-time video (RTV) systems such as cloud-to-vehicle
video for auto-driving, cloud gaming, and augmented/virtual
reality (AR/VR) [1]–[5] require not only high throughput for
high video quality, but also extremely real-time low latency
(e.g., less than 100 ms1 [6]–[8]) to maintain a smooth in-
teractive experience, which is extremely challenging. In RTV
systems, the sender runs congestion control algorithms (CCA)
[8]–[12] to detect network dynamics and uses flow controllers
to determine the encoding bitrate of the video frames, which is
based on the bandwidth detected by the congestion controller
(shown in Fig. 1). Once the video frames are encoded, they
are transmitted through the network channel (e.g., 5G, Wi-Fi,
and wired networks) to the receiver. In §II-A and §II-B, we
present a detailed latency analysis of existing RTV systems
and conclude that video frame packet queuing at bottleneck
node (e.g., the 5G base station and Wi-Fi access point) within

Corresponding author: Qinghua Wu, email: wuqinghua@ict.ac.cn
1We apply it from Zhuge [6], Hairpin [7], and Pudica [8]. They observed

that user experience degrades significantly once video frame delay exceeds
100ms.

the network channel is the primary contributor to the RTV
system’s high latency.

Packet queuing at the bottleneck node (BN) occurs when
the RTV sender’s encoding bitrate exceeds the network’s
capacity, for example, due to bandwidth drop. However, high
bandwidth jitter in network channels, especially in wireless
networks (e.g., 5G and Wi-Fi), is widely observed due to
user mobility and signal blockage [13]–[16]. Consequently,
packets are constantly queued up at the BN, typically the
5G base station (BS) and Wi-Fi access point (AP), resulting
in increased end-to-end (E2E) latency and reduced quality
of experience (QoE) [17], [18]. Since most CCAs in RTV
streaming use round-trip time (RTT) as a congestion signal,
the inflated queuing latency of the BN delays the congestion
signal, greatly challenging the CCA for prompt detection of
bandwidth fluctuations. Our large-scale measurements confirm
this by observing that a significant portion of users experience
high frame delays (§II-A and Tab. I). To achieve RTV’s
low latency, one solution is to inform the sender of the
congestion status at the BN when bandwidth drop, using
techniques such as explicit congestion notification (ECN) [19],
ABC [20], and L4S [21], [22]. Nevertheless, this type of
feedback signal must be processed at the receiver first and thus
suffers from a long feedback loop. During this interval, queue
buildup at the bottleneck still occurs, meaning that while these
solutions improve responsiveness, they remain insufficient for
achieving ultra-low latency. Consequently, recent studies focus
on shortening the feedback loop by signaling directly from the
BN to the RTV sender via the uplink, such as Zhuge [6].

Nevertheless, our controlled experiments (§II-C) reveal that
even with the shortest feedback loop, high frame delay is
still pervasive in RTV streaming, especially when bandwidth
decreases. The root cause is that existing solutions can only
indirectly drain the packet queue at the BN by reducing
the future sending rate (and the frame encoding bitrate). In
principle, these methods prevent new packets from being
added to the queue, but they cannot speed up the release of
currently queued packets. As a result, even if the BN knows
the exact future bandwidth, the RTV sender still fails to control
the latency to meet the stringent low-latency requirements of
RTV streaming.



To address this gap, our core idea is to drain the packet
queue at the BN as soon as possible when congestion occurs.
The opportunity lies in the fact that RTV systems use the video
frame as the basic transmission unit. Therefore, it is feasible
to drain the packet queue faster by replacing the currently
queued frames (to which these packets belong) with their lower
bitrate versions. Specifically, the BN can directly drop frames
waiting in the queue, and the sender then re-encodes and
retransmits new frames at lower bitrates. While this insight is
straightforward, implementing it faces two unique challenges:

(i) How should the BN decide which and how many frames
to drop? Because the BN simply forwards each incoming
packet to the mobile device, it is not aware of frame-level
information such as the frame boundary, i.e., which packets
are in the same frame. Furthermore, replacing existing frames
with new ones can introduce additional latency, including the
frame encoding latency and transmission time from the sender.
Therefore, the BN must balance the performance benefits and
costs associated with dropping frames.

(ii) How should the sender determine the bitrate of the re-
encoded frame? If the sender needs to re-encode the video
frames, this indicates that the current latency has become
unacceptably high. At this point, the sender CCA’s bandwidth
estimation is no longer accurate. This greatly challenges the
sender in choosing optimal frame bitrates that will quickly
clear the packet queue at the base station without significantly
degrading video quality.

Clearly, neither simple frame dropping on the network
side nor traditional flow control on the RTV sender side can
effectively address these challenges alone. We thus envision
the collaboration between the RTV sender and the network
channel (i.e., BN) to exchange information that each can ac-
curately perceive. The additional information from the sender
(resp. BN) will enable the BN (resp. sender) to make the
right decision in dropping frames (resp. flow control). Recent
developments such as IETF Media over QUIC (MoQ) [23],
[24] and IETF Sconepro [25] have demonstrated the feasibility
and benefits of the collaboration between endpoints (i.e., RTV
sender and RTV receiver) and the network channel. Our
solution follows this trend.

In this paper, we propose Co-RTV2, a systematic collabora-
tive framework for RTV systems. Co-RTV enables endpoint-
network collaboration between the BN and the RTV sender.
The BN relies on the video frame information (e.g., frame
boundary and size) from the sender to perform frame dropping.
In turn, the sender uses the feedback signal (e.g., bandwidth,
queue length, and dropped frames) from the BN to control the
bitrate for both newly encoded and re-encoded frames. First,
Co-RTV limits the increase in tail latency to a predictable
range, ensuring that any rise in latency does not exceed the
re-encoding delay cost (§III-B). Second, Co-RTV considers
different RTV scenarios’ preference to latency and image
quality, enabling scalable flow control at the RTV sender
(§III-C). In this way, Co-RTV can detect network congestion

2“Co” represents “collaborative”.

in advance and precisely control the RTV frame transmission
to adapt to bandwidth fluctuations.

We have implemented and evaluated Co-RTV in both an
emulated networks and a 5G testbed. Co-RTV significantly
reduces tail latency by 69.1% ∼ 81.3% in emulated environ-
ments and by 70.5% ∼ 77% in 5G testbed tests, demonstrating
its effectiveness in low-latency RTV streaming.

Our main contributions in this paper are summarised as
follows:

• We uncover the performance issue of RTV systems in
large-scale production networks and the limitations of
existing studies, and reveal the root cause (packet queuing
at the BN increases the latency). (§II).

• We design Co-RTV as a collaborative framework between
the BN and the sender, performing predictable latency
control and scalable flow control (§III).

• We have implemented and extensively evaluated Co-RTV
in emulated networks and a 5G testbed, demonstrating its
superior performance (§IV and §V).

II. BACKGROUND AND MOTIVATION

A. Background: RTV system’s high latency

Fig. 1: Queues in RTV system
RTV systems demand low-latency (< 100 ms) video stream-

ing to deliver an immersive user experience. In the RTV
system, the receiver decodes frames and renders video images,
and the sender is usually deployed on a cloud server and runs a
flow/congestion controller to dynamically adapt the encoding
bitrate and sending rate to the changing network bandwidth
[8]–[11], [26]. However, due to bandwidth fluctuations and
limitations of the encoder and decoder, queuing occurs at
various points: the sender (queue 1⃝), BN (queue 2⃝, e.g.,
the 5G BS and Wi-Fi AP), and the receiver (queue 3⃝), which
significantly increase latency, as shown in Fig. 1.

Queue 1⃝ and Queue 3⃝ have already been well
controlled. Queue 1⃝ arises from a mismatch between the
sending rate and the frame bitrate, typically due to encoder
overshoot [27], [28] or encoding delays (during the encoding
period, the sending rate is reduced). Fortunately, this issue
can be mitigated using advanced hardware encoders [29] or
by employing Salsify [27], which can quickly drain queue 1⃝
through an efficient encoder that can store encoding states.
Queue 3⃝ at the receiver occurs when the encoding rate
exceeds the receiver’s decoding capacity, a problem that can
be addressed by techniques such as AFR [30], [31], which
adjusts the frame rate to match decoding capability.

Queue 2⃝, however, presents a significant challenge in
current RTV systems. It usually occurs due to the sending



rate exceeding the BN’s forwarding rate or the sudden arrival
of other users’ burst flows. Fortunately, emerging networks
represented by 5G, Wi-Fi 6, and Wi-Fi 7 offer multi-user
assurance [32]–[42] (detailed in §VI), which means other
users’ burst flows will not increase the length of queue
2⃝. Therefore, there is a possibility to solve it by a well-

designed flow controller that can perceive or predict bandwidth
fluctuations in a timely manner.

Nevertheless, designing an RTV flow controller that works
well is challenging. This is mainly due to frequent bandwidth
fluctuations. In 5G and Wi-Fi networks, mobility and channel
interference often cause bandwidth fluctuations [14]–[16],
[43]–[45]. In extreme cases, bandwidth can drop by up to
10x at the 99th percentile [6]. To detect the bandwidth and
avoid the formation of queue 2⃝, the sender relies on the E2E
feedback signals, such as acknowledgment (ACK), negative
acknowledgment (NACK), or RTCP feedback [46]. However,
once queue 2⃝ forms when the bandwidth drops, it obstructs
the arrival of subsequent packets at the RTV receiver, delaying
the generation and return of feedback signals. As a result, the
RTV sender cannot react promptly to bandwidth reductions,
leading to extended queue 2⃝ and increased E2E latency, a
phenomenon referred to as the inflated control loop [6].

We summarize the above analysis with an examination
of over 10 million flows from a real-world RTV system
(anonymous for legal reasons) in Table I, which confirms the
analysis that RTV in wireless networks (especially 5G and Wi-
Fi 2.4 GHz) suffers from high frame delay and a significant
portion of users are impacted by the high latency.

Wired Wi-Fi (5 GHz) Wi-Fi (2.4 GHz) 5G

Frame 1.28 3.42 4.9% 2.1%
User 2.9% 5.7% 29.1% 15.6%

TABLE I: Proportion of frames experiencing delay > 100 ms and
proportion of users with over 5% of frames delayed over 100 ms
across different networks in a real-world RTV platform.

B. Investigation of RTV system’s high latency

To uncover the root causes of the high latency of RTV
systems, we further investigate the inherent limitation of
the E2E congestion control solution and explain the impact
of queue 2⃝ on RTV latency. We conducted a week-long
continuous RTV playback for A/B tests in our lab. Using a
5G network as an example, both a wired network and a B210
5G base station were connected to the same network, with the
sender employing COPA [9], a delay-based congestion control
algorithm. Moreover, to mitigate the influence of queue 1⃝ and
queue 3⃝, we incorporated the Salsify [27] into our encoder
and utilized a hardware decoder in the receiver in subsequent
experiments.

The experimental results indicate that the proportion of
frames with high latency (>100 ms) was 0.13% in the wired
network and 1.37% in 5G. We recorded both the per-frame
total delay and the queued delay at the BS, and report in Fig.
2. The results reveal the correlation between the high tail frame

Fig. 2: Total frame delay and the queued delay. High tail frame delay
is caused by queuing at the BS.

delay and the base station’s queued delay, indicating that the
bottleneck primarily residing in the wireless segment between
the user and the 5G BS. We further zoomed in on a high-
latency test case of one second during the RTV transmission,
which presents frame delay and queued delay, as well as
the sender’s encoding rate and sending rate, and the BS’s
forwarding rate and queued delay, as shown in Fig. 3. It can
be seen that delayed congestion control struggles to drain the
queue 2⃝, resulting in increased station’s queued delay.

Queue
Length

Fig. 3: A case of the sender and the BS’s states. The sender takes over
300 ms to decrease to a reasonable sending rate when the bandwidth
drops. The RTT between the BS and the sender is about 40 ms.

C. Limitations of existing solutions

To mitigate the impact of Queue 2⃝ on RTV systems, several
efforts have been made to make the flow controller closer to an
oracle-designed flow controller, such as shortening the control
loop [6], [19], [20], [47] to reduce congestion perception
time. The recently emerging L4S [48]–[50] optimizes latency
with ECN while also controlling queued time. Nevertheless,
we observe that existing solutions still suffer from high la-
tency in RTV streaming, especially when bandwidth drops,
as illustrated in Fig. 4. In this controlled experiment, we use
Linux TC to emulate 5G and Wi-Fi bandwidth fluctuations
(E2E RTT is set to constant 60 ms; other details are in
§V) and choose five solutions for comparison: (i) COPA [9],
a delay-based congestion control algorithm; (ii) ABC [20],
where the sender uses a bandwidth “increase” or “decrease”
signal marked by the BN and processed by the receiver to
determine the sending rate; (iii) Zhuge [6], where the sender
detects congestion by delayed ACKs directly from the BN
via the uplink; (iv) L4S [48]–[50], where the sender is fed
with the congested packet rate from the receiver and keeps



the BN’s packet queue length small via dropping packets3;
(v) Feedback-Driven Congestion Control (FDCC), where the
RTV sender is fed with the actual future bandwidth in traces
from the BN. Note that we introduce FDCC as an oracle flow
control solution (detailed in §V-A), it operates the shortest
control loop. However, since the feedback takes at least one
RTT delay (BN to sender) to take effect, this can also lead to
queue buildup.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

5

10

15

20

25

Ba
nd

wi
dt

h 
(M

bp
s)

Bandwidth 
ABC 
COPA 
FDCC 
Zhuge 
l4S

0

250

500

750

1000

1250

1500

1750

De
la

y 
(m

s)

Fig. 4: Frame delay of different solutions in emulated net-
works.

Fig. 4 shows that under the same bandwidth trace, different
solutions experience large differences in frame delay. The
average frame delays of COPA, ABC, Zhuge, and L4S are
213.3 ms, 173.5 ms, 227 ms, and 163 ms, respectively. These
averages are well above the stringent 100 ms low latency
requirements of RTV applications [7], [8]. We also found that
these solutions experience severe delay spikes (up to 1787
ms, 1231 ms, 1392.5 ms, and 674.5 ms, respectively) when
bandwidth drops. In contrast, FDCC significantly reduces the
average delay to 87.1 ms.

Nevertheless, it is notable that FDCC still has 13.1% of
frames with an E2E delay exceeding 100 ms. These results
indicate that: even the solutions with the shortest control loop
struggle to meet the low latency requirements of RTV stream-
ing. Although L4S keeps the length of the queue 2⃝ small
by dropping incoming packets, the sender will retransmit the
packets dropped by the BN to maintain normal frame decoding
and playback at the receiver 4, which makes it difficult to
achieve low latency. Assuming that the time between the
bandwidth drop and its effect at the sender is T and that the
available bandwidth drops to 1

n . By the time a new video frame
(affected by the feedback) reaches the BN, the accumulated
queue takes 2(n− 1)T to drain. This also explains the reason
of high tail latency when the bandwidth drops by more than
10×.

In summary, existing solutions that control latency by re-
ducing the future encoding bitrate cannot immediately release
the current frames queued at the BN. Even if the sender can
adjust its output bitrate at the exact moment of congestion, it
may still take a long time to drain the existing queue at the
BN, ultimately resulting in unsatisfied E2E latency.

3On one hand, the feedback signal in L4S needs to pass through the receiver,
resulting in a longer feedback path that relies on ECN signals. On the other
hand, L4S promises low packet loss, but its queue is relatively shorter. If
feedback is delayed and the queue fills up, this also results in packet loss.

4Video frames are compressed using reference frames during encoding. If
reference frames have not arrived, subsequent frames cannot be decoded.

D. Opportunity: endpoint and network collaboration

An intuitive solution to reduce the queued delay is to speed
up the release of queued packets at the BN (queue 2⃝) when
congestion occurs. This idea can be accomplished by directly
replacing queued frames with their lower bitrate versions.
Specifically, the BN can drop queued frames, and the RTV
sender then re-encodes and retransmits these frames at lower
bitrates (as in Salsify [27]). Nevertheless, this simple idea faces
two practical challenges:

• Balancing latency and quality: while re-encoding low-
bitrate frames promises to reduce latency, it may sacrifice
video quality, which also affects user QoE. This poses
two requirements. Firstly, the BN must carefully decide
whether to drop frames and how many frames to drop.
Secondly, the sender must carefully choose the bitrate for
the re-encoded frames or skip some of them according to
the QoE requirements of various RTV applications.

• Accommodating the loss recovery logic. The sender trans-
port layer performs reliable transmission mechanisms such
as loss detection and retransmission. If the sender has
no knowledge of the frames dropped by the BN, it will
continuously retransmit packets in those frames, wasting
bandwidth and traffic.

To overcome the above challenges, it is necessary to coor-
dinate the BN with the RTV sender. On the one hand, the
BN needs frame boundary information (i.e., which packet
belongs to which frame) from the sender to drop frames.
On the other hand, the sender needs feedback from the BN
about the dropped frames and network dynamics to re-encode
or skip frames. With frame dropping enabled at the BN,
we can limit the uncontrollable tail latency increase to less
than the time required to replace queued frames, which is
equivalent to the feedback and re-encoding time. Moreover,
the direct feedback from the BN paves the way for precise
flow control at the sender, addressing the major drawback of
existing solutions (i.e., unable to perceive in-flight frame status
timely). Note that recent developments such as IETF media
over quic (MoQ) [23], [24] have demonstrated the feasibility
and benefits of the collaboration between endpoints and the
network channel. The above insight leads to our design of
Co-RTV, a collaborative flow control framework that achieves
predictable tail latency control for RTV streaming.

III. CO-RTV DESIGN

This section details the design of Co-RTV. Overall, Co-RTV
is composed of two core components: 1) predictable latency
control via collaborative frame-drop at the BN and 2) scalable
QoE-driven flow control at the RTV sender. We begin with
an overview of Co-RTV in §III-A, followed by the details of
both components in §III-B and §III-C.

A. Co-RTV overview

Co-RTV is designed to meet two primary goals: predictable
latency control and scalable QoE-driven flow control.



RTV
Receiver

RTV
SenderFeedback info

Frame infoFrame Packet

ACK Packet

Frame
Encoder

Flow Controller

Frame-drop

Internet Link

wireless
Link

Frame info Network info

feedback

Bottleneck node

Queue

QoE
Setting

Re-encode
Setting

Frame
Sender

Fig. 5: The overview of Co-RTV

Predictable tail latency control: By implementing the
collabrative control, Co-RTV confines the increase in tail
latency within a predictable range, ensuring that the latency
increase does not exceed the re-encoding delay cost (described
as T ′

i+Qdi in §III-B1 and further reduced by Tpre in §III-B4).
This precise control over tail latency distinguishes Co-RTV
from prior approaches.

Scalable QoE-driven flow control: Co-RTV employs a
scalable flow control to manage predictable latency increase,
customized to meet the QoE requirements of various RTV
scenarios. Specifically, Co-RTV considers the scenario prefer-
ences to latency, frame rate, and image quality, enabling flex-
ible QoE configurations to optimize various RTV scenarios’
flow control strategies.

Fig. 5 illustrates the architecture of Co-RTV. In Co-RTV,
the BN has access to the frame information (e.g., frame size
and boundaries) embedded by the sender, which is detailed
in §III-B2. Upon receiving video frames, the BN estimates
the frame forwarding delay and performs frame-drop control
for frames with excessive forwarding delays to make the
latency inflation predictable. Subsequently, the BN provides
feedback to the RTV sender, which adjusts its flow control
strategy by modifying (re-)encoding settings based on the
QoE requirements of the scenarios to make the flow control
scalable. A summary of the key parameters used by Co-RTV
in §III-B and §III-C is provided in Tab. II.

B. BN: predictable tail latency control

At the BN, frame-drop control plays a key role in pre-
dictable tail latency control. The BN continuously estimates
the forwarding delay for each video frame using the frame
information and network information. It then decides whether
to drop the frame based on its potential impact on latency
and video quality reduction. In §III-B1, we introduce the
decision principle of frame-drop and the required information.
§III-B2 details the required frame information embedded by
the sender. Later, §III-B3 and §III-B4 present Co-RTV’s
bandwidth smoothing strategy for robustness and the proactive
frame-drop control to ensure real-time performance; these play
a key role in Co-RTV for timely and effective frame-drop
under bandwidth fluctuations. Last, §III-B5 introduces the
feedback sent to the RTV sender.

1) Principle of frame-drop decision: For a frame i, a frame-
drop operation results in two impacts:

Parameter Explanation

α sensitivity parameter representing the quality decrease
w The time window for calculating the bandwidth at the BN

Gaini the gain of dropping frame i
Ldi latency decrease of dropping frame i
Qdi quality decrease of dropping frame i
Bw the BN’s bandwidth

RTTBN the RTT between the BN and the sender
QLen the queue length of the BN
FR frame rate

Bwold the BN’s bandwidth before the bandwidth decrease
Tpre time of decision-making prior to the frame arrival

size(i) the size of frame i
SndRate the sending rate of the sender

R the encoding bitrate of the sender
τ the queue empty time setting of the sender

QSF the quality sensitivity factor setting of the sender
Ns number of skipped frames
Nd number of dropped frames

TABLE II: Explanation of parameters

• Latency decrease (Ldi): Dropping a large frame reduces
the forwarding time, which can be significant in cases
where the frame is too large.

• Quality decrease (Qdi): Dropping a frame leads to a
reduction in quality, as the new frame is usually re-encoded
to a lower bitrate or skipped.

Ldi is quantified in seconds, while Qdi is evaluated using
an equivalent time increase metric, also quantified in seconds
(see Eq. 4). Therefore, the gain of dropping frame i, denoted
Gaini, can be defined as:

Gaini = Ldi −Qdi (1)

The BN can compute the above gain Gaini for each video
frame, then drop the frames with Gaini > 0. For a frame i,
Ldi can be computed by the frame i’s forwarding time Ti and
the re-encoded frame’s forwarding time T ′

i .

Ldi = Ti − T ′
i (2)

The BN tracks the current queue length QLen and for-
warding bandwidth Bw. Ti can be easily calculated if the
size of each frame size(i) is known. As shown in Fig. 6,
calculating T ′

i is more complex. Initially, re-encoding feedback
information must be sent back to the sender, which takes 1/2
RTTBN . The sender then needs some time for re-encoding (no



more than 1
FR ), after which the frame is transmitted back to

the BN, requiring another 1/2 RTTBN . Due to pacing during
transmission, the complete frame will take no more than 1

FR
time to be sent over. Here, RTTBN represents the round-
trip time between the BN and the sender, which is detailed
by RTTBN calculation in supplemental materials, while FR
denotes the video frame rate. Ldi then can be represented as:

Ldi =
QLen+ size(i)

Bw
− (RTTBN +

2

FR
) (3)

Sender

QLen

𝑇!"
𝑇!

Frame 𝑖
"

Bottleneck node

𝟏
𝟐
𝑹𝑻𝑻𝑩𝑵

𝟏
𝟐𝑹𝑻𝑻𝑩#
re-encode
pacing

Sendi
ng fra

me i

Sendin
g QLen

Receiver

Frame i

Sendin
g fram

e 𝑖!

Fig. 6: Illustration of forwarding i or re-encoding i′

The re-encoding quality decrease Qdi of frame i is related to
the bandwidth drop ratio. Let Bwold represent the bandwidth
before the reduction and Bw represent the current bandwidth.
Qdi can then be expressed as:

Qdi = α · Bwold −Bw

Bw
· 1

FR
(4)

where α < 1 is a design parameter to configure the sensitivity
of frame dropping. We set α to 0.5 in our current implemen-
tation based on numerous experiments.

Consequently, the cost of dropping a frame i is T ′
i + Qdi,

which can be interpreted as the threshold for tail latency
growth. In summary, the BN can make real-time frame-
drop decisions by analysing the frame information, BN queue
information, and bandwidth.

2) Frame information embedded at the RTV sender: To
enable the cost computation of frame dropping, each packet
sent by the sender is embedded with the following frame
information.
• Frame Number: Identifying the sequence of the video

frame.
• Packet Sequence: Specifying the packet’s position within

a specific frame.
• Total Packets Number: Indicating the total number of

packets of a specific frame.
• Latest Re-encoded Frame Number: Tracking the most

recently re-encoded frame, which is used for forwarding
recovery in §III-B4.

One way to implement the piggyback of the above informa-
tion is using media over QUIC (MoQ) [23], [24] as the latest
IETF MoQ draft supports carrying relevant media information.

3) Bandwidth estimation at the BN: The BN is aware
of each user’s amount of data successfully transmitted over
a period of time, enabling Co-RTV to accurately calculate
the available bandwidth Bw based on previous efforts [20],
[33], [47], [51]–[57]. However, the unsmoothed Bw fluctuates
severely, which significantly disrupts the real-time decision-
making of Co-RTV. The root cause lies in the unpredictability
of channel quality and other users’ flow patterns, which
affect network capacity allocation. Previous solutions [6], [20]
typically rely on a longer time for smoothing. Smoothing
effectively reduces bandwidth fluctuations but also delays
congestion awareness. This trade-off may fail to meet RTV’s
real-time requirements, a point not discussed in previous work.
Indeed, simultaneously meeting real-time requirements and
bandwidth calculation robustness is a significant challenge.
Co-RTV employs the average forwarding bandwidth over a
time window w for smoothing to enhance the robustness
of bandwidth calculation. However, this smoothing technique
may introduce some inaccuracies in bandwidth estimation. To
address this issue, Co-RTV continuously provides QLen feed-
back to the sender to mitigate the impact of bandwidth overes-
timation (Eq. 6). Our experiments in §V-B demonstrates that
the latency can still be optimized even with some deviation in
bandwidth. Furthermore, Co-RTV integrates proactive frame-
drop control (detailed later) to improve the responsiveness. Our
current implementation sets w to 50 ms based on real-world
deployments.

i+1
sender

bottleneck
node

receiver

𝑇!

i i+2 i+3 i+4 i+5

ack" ack"#!

𝑇$

frames
Fig. 7: Case study of dropping frame i+ 2

4) Frame dropping at the BN: With the frame and network
information, calculating the Gaini is straightforward. Then
the question nails down to the time for the calculation of
the cost related to frame dropping and the operation of frame
dropping. A straightforward approach is to calculate when the
frame reaches the BN. However, this approach delays frame-
drop decision-making if the dropped frames arrive later than
the bandwidth reduction. Therefore, Co-RTV makes frame-
dropping decisions k frames ahead of the frame arrival. An
example with k = 2, illustrating the dropping of frame i+ 2,
is shown in Fig. 7.

Let us consider a scenario at time T1 when a bandwidth
drop occurs while transmitting frame i. This reduction is not
severe enough to cause significant queue buildup. Hence, the
frames i and i+1 are unlikely to be dropped, while frame i+2
will be dropped. Instead of evaluating whether to drop frame
i+2 when it arrives at the BN at time T2, Co-RTV proposes a



more proactive approach: predict and decide which frames to
drop immediately when the bandwidth drops at time T1. This
approach is motivated by the fact that the earlier the decision
to drop the frame is made, the sooner the RTV sender receives
the feedback from the BN for proper flow control.

To achieve this, the BN must estimate the frame size and
queue length of frame i + 2 before it arrives. In most RTV
scenarios, such as cloud gaming and video conferencing, I-
frames are transmitted only for synchronization during the ini-
tial transmission or after a prolonged network disconnection,
while the rest of the video frames are P-frames. Hence, the
size difference between frames i, i+1, and i+2 is minimal (all
are P-frames). As such, the size of frame i+2 can be inferred
from frame i. In conclusion, using the bandwidth at T1 and
the size of frame i, we can predict the queue length at T2 and
make the frame-drop control in advance. With this basis, Ldi

can be represented as follows, where Tpre represents the time
of decision-making made prior to the frame arrival time.

Ldi =
QLen+ size(i)

Bw
− (RTTBN +

2

FR
) + Tpre (5)

We can then calculate the Gaini for each frame i and
perform the frame-drop control algorithm as depicted in Al-
gorithm 1.

Algorithm 1: Frame-drop Algorithm
Data: Network Information: RTTBN , QLen, Bw,

Bwold; Frame information: FR, size(i), Tpre

Result: BN’s frame-drop list: L

1 function OnFrameDropping():
2 L← {};
3 for frame i in framelist and Bwold > Bw do
4 Ldi ← QLen+size(i)

Bw − (RTTBN + 2
FR ) + Tpre;

5 Qdi ← α · Bwold−Bw
Bw · 1

FR ;
6 Gaini ← Ldi −Qdi;
7 if Gaini > 0 then
8 L← L ∪ {i};
9 end

10 end
11 return L

Forwarding recovery after frame dropping: Once decid-
ing to drop frame i, the BN continuously monitors the “Frame
Number” field and the “Latest Re-encoded Frame Number”
field as detailed in §III-B2. If the “Frame Number” < i or the
“Latest Re-encoded Frame Number” >= i, the video frame
can be forwarded. Here, “Frame Number” < i indicates that
the frame is one of the video frames before frame i that should
be dropped, while “Latest Re-encoded Frame Number” >= i
means the frame is a newly encoded video frame after the
sender receives the dropping feedback of frame i. In other
words, newly encoded video frames should be forwarded,
enabling the timely recovery of the forwarding state.

5) Feedback to sender: After determining which frames
to drop, the BN sends feedback to the sender. The feedback
includes:
• Bandwidth: The current bandwidth of the BN.
• Queue Length: The current queue length of the BN.
• Dropped Frame Information: The sequence number of the

frame that starts to be dropped.
If no frames are dropped, the feedback simply contains

the queue length. In cases where frames are dropped, the
feedback specifies which frames were dropped and notifies the
sender to adjust its encoding strategy for subsequent frames.
The feedback is transmitted at intervals aligned with the RTT
between the BN and the sender. As shown in TECC [58],
sending feedback once per RTTBN is sufficient. Note that if
frame-drop occurs, the feedback will be sent immediately.

C. Sender: scalable QoE-driven flow control

The second core component of Co-RTV is the scalable QoE-
driven flow control at the RTV sender. Upon receiving the
feedback of frame dropping, the sender must decide the bitrate
and whether to re-encode or skip some of the dropped frames
based on the QoE requirements. In this section, we present Co-
RTV’s scalable flow control to optimize the QoE for different
RTV scenarios.

Fig. 8: Different scenarios’ preference for latency, frame rate,
and quality.

1) Scalable flow control design space.: As shown in Fig.
8, different RTV scenarios have different priorities in reducing
bandwidth consumption when bandwidth drops or queues
accumulate. To accommodate these varying QoE requirements,
Co-RTV introduces two scalable parameters: queue empty time
and quality sensitivity factor, where the queue empty time
represents the trade-off between latency and bitrate (quality
× frame rate), while the quality sensitivity factor captures the
trade-off between frame rate and quality. The effects of the
two parameters are also plotted in Fig. 8.

Queue Empty Time (τ ): When the BN’s queue begins
to accumulate, the sender needs to reduce its bitrate to drain
the queue. The time to empty the queue directly impacts the
latency of video frames. We denote the queue empty time as
τ . As shown in Eq. 6 and Fig. 8, a longer empty time results
in a slower decrease in bitrate, affecting a larger number of
video frames and increasing their latency. Conversely, a shorter



empty time accelerates the bitrate reduction, impacting fewer
frames, while it leads to the generation of some extremely
small frames.

Quality Sensitivity Factor (QSF ): Bandwidth drop and
frame dropping operations by the BN result in a bitrate
decrease, while the trade-off between the frame rate and
the quality varies across scenarios [59]. QSF represents the
balance between frame rate and quality. As shown in Fig. 8, a
lower QSF favors maintaining the frame rate, while a higher
QSF prioritizes maintaining quality. This flexibility allows
the RTV sender to adapt the encoding strategy according to
its specific QoE preferences.

2) Encoding strategy: The encoding strategy at the sender
is determined with the feedback from the BN and its own QoE
requirements, particularly focusing on how the queue empty
time (τ ) and the quality sensitivity factor (QSF ) influence the
encoding behavior.

Congestion control: Co-RTV employs a traditional delay-
based CCA. In our implementation, we use COPA, which can
be replaced with other CCAs. We further introduce an opti-
mization to address the impact of non-congestion delay jitter
in wireless networks, thereby enhancing Co-RTV’s throughput
without unnecessary bitrate reductions. Specifically, when the
sender observes an increase in RTT within a threshold while
the BN’s queue length remains nearly unchanged, it maintains
the current bandwidth instead of reducing it. In contrast, after
receiving the feedback of frame dropping, the bandwidth will
be updated to that fed back by the BN (Bw in §III-B5).

Encoding Bitrate Calculation: When receiving feedback,
the encoding bitrate (R) is simply calculated by the queue
length (QLen), the sending rate (SndRate) from the conges-
tion controller, and the queue empty time (τ ). It ensures the
sender reduces its bitrate to drain the BN queue without over-
burdening the network, which is known as queue-avoidance.

R = SndRate− QLen

τ
(6)

Upon receiving frame-drop feedback, the number of
dropped frames, denoted as Nd, is determined by the sequence
number of the dropped frame, i, and the sequence number of
the next frame to be encoded, j, such that Nd = j − i. Since
the dropped video frames need to be re-encoded and re-sent,
they will occupy the bandwidth that would otherwise be used
for normally encoded video frames. The encoding bitrate, R,
is subsequently adjusted as:

R = R · τ · FR

Nd + τ · FR
(7)

QoE-driven Frame-skipping Strategy: As lowering the
bitrate alone sacrifices the frame quality, we use the Quality
Sensitivity Factor (QSF ) to make a trade-off between frame
quality and frame rate. The number of frames to be skipped,
Ns, is calculated with QSF :

Fig. 9: Co-RTV implementation in 5G

Ns = QSF ·(τ ·FR+Nd)

(
1− R

SndRate

)
, 0 ≤ QSF ≤ 1

(8)
Here, QSF = 1 indicates the scenario prioritizes maintain-

ing high video quality, while QSF = 0 indicates that the
scenario favors maintaining the frame rate without skipping
frames. Once the number of skipped frames is determined,
the skipped frames are evenly distributed across the future
encoded frame sequence to ensure smooth playback. After
skipping frames, the sender will increase the bitrate R to
ultilize the preserved bandwidth of skipped frames.

IV. CO-RTV IMPLEMENTATION

Although implementing Co-RTV on Wi-Fi access points
is relatively straightforward, we first deploy Co-RTV in a
5G environment. This choice is motivated by scenarios such
as industrial Internet and autonomous driving, where wired
connections are impractical and Wi-Fi coverage is insufficient.
Below, we detail implementation of Co-RTV at the 5G base
station and the feedback implementation, followed by the
RTTBN calculation and Co-RTV’s encoder.

At last, for more implementation about RTTBS calculation
and Co-RTV’s encoder, please refer to supplemental materials.

Practical implementation: As illustrated in Fig. 9, we
establish an E2E 5G network testbed in our laboratory. Both
the 5G core network and the radio access network (RAN)
stacks are deployed using the open-source OpenAirInterface
(OAI) [60]–[62] 5G project, which is compliant with the
3GPP Release 15 standard [35]. The Co-RTV server and 5G
core components are hosted on a cloud server. The 5G base
station is built on an SDR-based (Software-Defined Radio)
device, XG-Station [63], which supports customized physical
layer configurations. Leveraging the 5G RAN design, the base
station determines the capacity allocated to each mobile user
by accessing physical layer resource allocation. Following the
approaches of PBE-CC [47] and Tutti [53], we select two
key resource parameters, Physical Resource Block (PRB) and
Transport Block Size (TBS), to estimate both capacity and
bandwidth. Based on these metrics, Co-RTV performs frame-
drop control through a two-phase mechanism: enqueue and
dequeue control. Further details regarding code-level deploy-
ment are provided in the supplementary materials.

Implementation of feedback and frame information
embedding: Information exchange between the network and
the endpoint is deeply discussed in IETF MoQ [23], [24],



IETF Sconepro [25] and XCP [64], which becomes the trend
in next-generation networks. As more secure and effective
feedback channels/methods will appear, we will update Co-
RTV accordingly. To verify the effectiveness as well as enable
collaboration between the sender and the BN, Co-RTV extends
the APN6 [65] framework for enhanced feedback and frame
information in IPv6. For IPv4, Co-RTV supports both the
RTP/RTCP and QUIC, with the feedback information placed
at the beginning of the UDP datagram. It is important to note
that Co-RTV currently does not support the TCP protocol, as
the streaming transmission mechanism of TCP does not allow
for reverting to an untransmitted state once data has been sent.
Moreover, most RTV systems don’t prefer to use TCP due to
its head-of-line blocking problems [66]. However, modifying
the server-side TCP protocol to support Co-RTV in the future
remains a possibility.

RTTBN calculation: The BN can estimate the RTT from
the BN to the user endpoint based on link-layer data. Addition-
ally, by obtaining the RTT between the client and the sender
from the RTCP packets [6], the BN can calculate RTTBN .
For the QUIC protocol, RTTBN can be estimated by real-
time monitoring of the packet number of uplink packets and
ACK frame’s contained packet number of downlink packets.
To achieve this in the actual deployment, we removed the
encryption of the QUIC packet number and the ACK frame,
which poses minimal security risk as TCP’s packet number and
the ACK frame are in plaintext. If maintaining E2E encryption
is desired, the E2E RTT information can be conveyed through
the IP options field or the MoQ standard protocol to calculate
RTTBN , where RTTBN = RTTE2E−RTTLL (with RTTLL

representing the link-layer RTT between the BN and the RTV
receiver).

Co-RTV’s Encoder: At the sender side, Co-RTV imple-
ments advanced encoding state preservation and recovery
mechanisms, similar to Salsify [27]. The encoder saves and
restores its internal state based on the hardware encoders.
The encoder adjusts its reference frame and bitrate with
the saved encoding state to ensure that the stream remains
consistent without reinitializing the entire encoding process
when receiving the feedback of frame dropping.

V. EVALUATION

In this section, we present the evaluation of Co-RTV, which
consists of two parts: emulated environment evaluation and
5G testbed evaluation.

Emulated environment evaluation: We deployed a Linux
TC-based emulation to test Co-RTV’s performance. The
testbed comprises three main docker containers: an RTV
receiver container using the XQUIC [67] protocol which
is a cross-platform implementation of QUIC [68], [69], an
emulated BN container to emulate 5G network fluctuations
via 5G traces as well as control packet forwarding, and an
RTV sender container running the RTV and XQUIC stack.

5G testbed evaluation: The 5G testbed experiments were
conducted using our 5G implementation and a deployed Co-
RTV sender on the cloud. The measured RTT from the 5G

base station to the cloud Co-RTV sender was approximately
60 ms. The Co-RTV client connected to a 5G Customer
Premises Equipment (CPE) device and accessed the sender
via the 5G base station, while other users accessed the Internet
through separate CPEs. Random network activities from these
users introduced random traffic variability, providing a realistic
environment to evaluate Co-RTV’s performance.

A. Experiment Setup

We evaluated Co-RTV by transferring the video at 60 fps. In
subsequent experiments, forward error correction (FEC) was
not enabled in the sender. We introduce the baselines, traces,
and evaluation metrics used in the experiments below.

Baselines. The baseline algorithms include COPA, ABC,
Zhuge, FDCC, and Co-RTV without feedback.
• COPA [9]: A widely used delay-based RTV congestion

control algorithm integrated with XQUIC [67].
• ABC [20]: A feedback-driven solution where the BN

predicts bandwidth variations and informs the sender band-
width “increase” or “decrease” signal.

• Zhuge [6]: A feedback solution where the BN informs the
sender of congestion via delayed ACKs.

• FDCC: Operating as an oracle congestion control in both
emulated and 5G testbed environments by feeding precise
bandwidth Bw and queue length QLen to the sender.
The sender calculates its sending rate Rate based on this
information as:

Rate = Bw − QLen

τ
(9)

where τ represents empty time, the same role as in Co-
RTV.

• Co-RTV without feedback (w/o fb): the BN drops frames
when bandwidth drops without feedback. The sender
doesn’t retransmit them by an advanced reference frame
setting referred to Salsify [27].

Note that we did not include additional comparisons with
L4S [21], [22] and other CCAs such as SQP [10], GCC [11],
BurstRTC [26], and Pudica [8]. This is because we believe that
FDCC represents the theoretical upper bound achievable by
these CCAs and L4S. Furthermore, since L4S operates based
on SCREAM [70], comparisons with COPA and COPA-based
solutions (such as ABC and Zhuge) would not be meaningful.

Traces. The evaluation utilized five weak long network
traces collected in real-world 5G environments from shop-
ping malls, classrooms, outdoor areas, and stadiums with 5G
Android phones using iperf3. These traces are detailed in
supplemental materials, denoted as mall, office, classroom,
outdoor, and stadium, as shown in Fig. 10.

Metrics. We use the following metrics for evaluation.
• Frame delay. The time needed between frame encoding

and decoding, reflecting real-time latency.
• Frame size. An indicator of video image quality, with

larger frames indicating higher visual fidelity.



0 10 20 30 40 50 60
Time/s

0

5

10

15

20

25
Ba

nd
wi

dt
h/

M
bp

s

(a) Mall

0 10 20 30 40 50 60
Time/s

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ba
nd

wi
dt

h/
M

bp
s

(b) Office

0 10 20 30 40 50 60
Time/s

0

20

40

60

80

100

Ba
nd

wi
dt

h/
M

bp
s

(c) Classroom

0 10 20 30 40 50 60
Time/s

0
5

10
15
20
25
30
35
40

Ba
nd

wi
dt

h/
M

bp
s

(d) Outdoor

0 10 20 30 40 50 60
Time/s

0

10

20

30

40

Ba
nd

wi
dt

h/
M

bp
s

(e) Stadium

Fig. 10: Network traces

Fig. 11: Overall performance under different traces
Fig. 12: Performance under different network delays

QoE better

Fig. 13: Different empty time

B. End-to-End Performance

We first evaluate the performance of Co-RTV in emulated
environments. The RTT from the receiver container to the BN
container is set to fixed 10ms5 in later experiments since the
RTT between the real-world user endpoint and the BN is about
10 ms. The RTT from the BN container to the sender container
changes in later experiments. Unless otherwise specified, the
empty time τ in both FDCC and Co-RTV was set to 50ms,
the QSF was set to 0, and the delay between the BN and the
sender is set to 20 ms under trace mall.

Overall performance. As shown in Fig. 11, Co-RTV re-
duces 95th percentile frame delay by over 69% and increase
average video frame size by 28.2% ∼ 36.3% than other
solutions. Compared to FDCC, Co-RTV reduces the frame
delay by 37.5% while achieving similar frame quality. As
shown in the 95th percentile delay results, Co-RTV maintains
a tail latency of around 100 ms across diverse networks,
offering significantly lower latency than FDCC as well as other
solutions. In terms of frame quality, the comparison of frame
sizes shows that Co-RTV and FDCC both achieve high video
quality, with little difference between them (within 2.1%), yet
Co-RTV outperforms other solutions.

Impact of feedback delay. We dynamically change the
delay between the BN and the sender to explore the impact of
feedback delay. As presented in Fig. 12, Co-RTV consistently

5 [71] standardizes the 5G air interface delay 4ms for eMBB, and the RTT
is about 10ms.

outperforms other solutions, achieving up to 50% lower tail
latency compared to FDCC and reducing delays by over 80%
compared to others while maintaining high frame quality. For
the 95th frame delay, as feedback delay increases, all baselines
suffer from higher feedback delay and produce uncontrollable
frame delay increase, while Co-RTV maintains predictable
frame delay. Though FDCC achieves the largest average frame
size, the frame size gap between FDCC and Co-RTV is within
10%, offering an ultra-low latency when the network delay is
up to 50 ms.

In addition, we further explored different QoE settings (τ
and QSF ) to verify the advancement of scalable flow control.

Impact of the empty time. As shown in Fig. 13, Co-RTV is
labeled as ”C” and FDCC as ”F,” with the numbers following
each indicating the empty time values in milliseconds. Points
toward the top-right indicate larger frame size and lower delay,
which represents better QoE. As the empty time τ increases,
Co-RTV maintains high QoE by balancing frame size growth
with minimal tail latency increase, significantly outperforming
other solutions. Notably, FDCC shows greater sensitivity to the
empty time changes, as packet queuing at the BN significantly
increases FDCC’s tail delay when larger empty time is set.
This reflects Co-RTV’s ability to maintain a superior trade-off
between delay and video quality.

Impact of QSF . QSF effectively manages the trade-
off between frame size and frame rate during bandwidth
reduction. To evaluate this, we recorded the overall proportion
of small frames under different QSF values (Fig. 14a), as
well as the variations in frame size and frame rate across
different levels of bandwidth reduction and different QSF
values (Fig. 14b). Specifically, we measured the proportion of
frames smaller than expected, where ”expected” refers to the
ideal frame size based on the sending rate, defined as frames
ranging between 10% and 40% of the ideal size. When QSF
is set to 0, frequent queuing or frame-dropping results in a
higher proportion of small frames. As QSF increases, the
proportion of small frames decreases. Notably, frame skipping
is only triggered when there is a significant bandwidth drop,
ensuring that the overall frame rate remains largely unaffected,



(a) Small frame ratio (b) Frame rate and size

Fig. 14: Impact of QSF

even with QSF set to 1.
Additionally, we examined the performance of frame delay

and frame size under different QSF values during a detailed
bandwidth reduction event. A carefully designed bandwidth re-
duction experiment further demonstrated that QSF effectively
balances frame size and frame rate under varying bandwidth
conditions, as illustrated in Fig. 14b. In particular, in high-
motion scenes where bandwidth reduction is more pronounced,
increasing QSF can help safeguard video frame quality and
prevent substantial degradation in visual quality.

Impact of bandwidth calculation accuracy. As Co-RTV’s
frame-drop control relies on the bandwidth calculation at
the BN, we furthermore explore the impact of bandwidth
calculation accuracy to Co-RTV in time window w. Given
that achieving completely accurate bandwidth estimation is
difficult in time-varying wireless networks, it is important to
evaluate Co-RTV’s performance when the estimation deviates
from the real bandwidth.

In the emulation environment, we can obtain accurate band-
width by directly reading the TC setting of trace stadium.
To emulate the impact of inaccurate bandwidth calculation,
we multiply the actual bandwidth by different ratios (0.8,
1.0, 1.2, 1.5) and provide them to Co-RTV. As shown in
Fig. 15, under-estimation of the bandwidth results in smaller
video frames, while over-estimation leads to a slight increase
in both frame delay and frame size. Notably, even a 50%
over-estimation yields an overall delay difference of less than
15%. The reduced frame size observed under under-estimation
conditions is attributable to Co-RTV’s increased propensity
for frame-drop, which causes the sender to frequently receive
feedback containing lower-than-actual bandwidth, thereby pro-
ducing smaller frames. Conversely, over-estimation does not
substantially increase frame delay because Co-RTV controls
tail latency through frame dropping and queue length feed-
back. As a result, Co-RTV keeps delay increases within a
predictable range.

Impact of α. The parameter α functions as a frame quality
sensitivity coefficient for frame-drop. As α increases, co-
RTV assigns greater importance to the cost associated with
quality degradation resulting from frame-drop. To investigate
this relationship, we examined how the 95th percentile of
frame delay and the average frame size vary across different α
values. Our results reveal that decreasing α leads to reductions
in both the 95th frame delay and the average video frame size.
Conversely, increasing α results in pronounced increases in the
95th percentile frame delay and the average frame size.

Fig. 15: Inaccurate bandwidth Fig. 16: Impact of α

Fig. 17: 5G testbed results

C. 5G testbed Experiments

In our 5G testbed experiments, the test RTV client was
the only connection to the test CPE, ensuring that there was
no interference from other streams. We conducted A/B tests
for over ten thousand minutes over tens of days, alternating
between six different RTV solutions, each for five-minute
intervals. The logs from both the client and the server were
synchronized to calculate the frame delay for each solution.

The results, shown in Fig. 17, demonstrate that Co-RTV
delivers consistent low latency, outperforming other solutions.
In over 80% of the cases, the video playback delay remained
below 100ms, ensuring an excellent user experience. Tail
latency, in particular, showed remarkable differences across
solutions. Although FDCC performs reasonably well, it ex-
hibits a higher tail latency compared to Co-RTV. In contrast,
Co-RTV maintains the 99th percentile latency close to 100ms,
significantly reducing 70.5% ∼ 77.0% of the tail latency com-
pared to other solutions. Even for FDCC, Co-RTV achieves
a 40.3% reduction of the tail latency (i.e., the 99th percentile
delay).

D. Co-RTV overhead

Co-RTV incurs minimal bandwidth overhead, approximately
1% as well as minimal computational overhead. The primary
source of overhead in Co-RTV, compared to other solutions,
comes from the additional feedback information embedded
in packet headers. In our experiments that involved tens of
thousands of minutes of RTV video playback, Co-RTV’s
feedback accounted for only 1.3% of the total transmitted
data. We further observed that Co-RTV introduces minimal
computational overhead, as the base station’s CPU utilization
remained largely unchanged after deployment. Notably, our
implementation on a Raspberry Pi 5 confirmed that Co-
RTV efficiently supports real-time RTV streams at 100 Mbps,
underscoring its practicality on resource-constrained Wi-Fi
APs.



E. Evaluation Conclusion

Overall, the collaborative design of Co-RTV achieves higher
RTV video quality and lower RTV latency. The improved
video quality primarily stems from BN’s feedback of queue
length to the sender, enabling it to avoid unnecessary bitrate
reductions in response to non-congestion events, a common
issue in real-world Wi-Fi and 5G networks due to frequent
forwarding delay fluctuations. Moreover, by allowing BN to
promptly drop oversized video frames that cannot be for-
warded in time and tell the sender to re-encode them into
smaller frames, Co-RTV significantly reduces tail latency. We
also include a PowerPoint presentation in the supplementary
materials, featuring two videos obtained from our emulated
experiments: one demonstrating Co-RTV and the other show-
casing the original RTV system using COPA.

VI. DISCUSSION AND FUTURE WORK

Co-RTV deployability: Co-RTV requires moderate modi-
fications to existing BNs (5G base stations, Wi-Fi APs) and
senders. As the IETF MoQ standard continues to evolve [23],
[24], such collaborative mechanisms are expected to receive
broader support. Latency-sensitive RTV applications, includ-
ing AR/VR, cloud gaming, and cloud-to-vehicle video, con-
tinue to face commercial challenges due to persistent latency
issues [7], [8], [30], [72]–[74], underscoring the necessity of
standardized collaboration between operators and OTT (Over
the top) providers.

Uplink support: In uplink scenarios such as vehicle-to-
cloud video, Co-RTV remains effective: mobile devices can
access real-time wireless channel and queue metrics, enabling
prompt feedback to RTV applications and facilitating efficient
frame dropping and collaborative control, thus improving
uplink performance, like PBE-CC [47].

The impact of multiple users’ flow: Fortunately, in emerg-
ing networks such as 5G [32]–[36], Wi-Fi 6 [37]–[39], and Wi-
Fi 7 [40]–[42], multi-user assurance is provided by forwarding
their packets simultaneously. As a result, bursty traffic from
other users does not significantly increase the queue length of
the Co-RTV flow. Additionally, Co-RTV ensures fairness in
multi users’ competition scenarios as fair capacity allocation
in Wi-Fi and 5G networks.

The impact of one user’s multiple flows: In scenarios
where a user is simultaneously receiving multiple flows, such
as downloading a file while watching an RTV video, cross-
stream interference can degrade performance. In practice, users
often prioritize the RTV stream when experiencing stuttering
by reducing or halting the file download. Future work will
focus on expanding Co-RTV’s capabilities to handle such
multi-stream scenarios. For the same user’s multiple RTV
streams, the BN can evenly allocate the available bandwidth
and queue length among all RTV streams. This approach
ensures both fairness and low latency across multiple RTV
flows for the same user.

Implementing Co-RTV to Wi-Fi AP: In Wi-Fi 6 and Wi-Fi
7 access points, Co-RTV can be easily implemented. We will
conduct customized development based on the open-source

OpenWrt [75] codebase and plan to release our modifications
in the future. However, earlier Wi-Fi standards, such as Wi-
Fi 5, utilize shared forwarding queues among users, which
presents additional challenges for performance optimization.

Dynamic adaptation flow control: Real-time video content
exhibits temporal variability in motion characteristics [76];
consequently, fixed values of the parameters τ and QSF
may become suboptimal. We will develop an adaptive control
mechanism that continuously estimates motion dynamics and
updates τ and QSF to preserve the intended trade-off among
perceptual quality, latency, and bitrate, which will be pursued
in future work.

VII. RELATED WORK

E2E Low Latency Optimization: Several approaches [8]–
[12] focus on minimizing latency by precise E2E congestion
detection mechanisms. Salsify [27] enhances this process
by dynamically adjusting bitrate and reference frame encod-
ing, enabling swift queue clearance at the sender.Moreover,
techniques like Forward Error Correction (FEC) [7], [77]–
[80] are commonly employed to mitigate packet loss in
mobile networks, further optimizing latency. Some research
also explores adaptive layered encoding strategies [81]–[83]
or intelligent encoding solutions [84], [85] that allow for
flexible bitrate adjustments or packet loss during network
fluctuations, contributing to reduced E2E latency. Additionally,
some works [86], [87] utilize multipath to optimize RTV
latency. Different from these methods, Co-RTV directly drops
existing queued frames to control latency proactively.

Endpoint and Network Collaboration for RTV: Solutions
such as Zhuge [6] reduce the control loop by introducing
delayed ACKs at the AP, allowing the sender to detect
network congestion quickly. ABC [20] improves on this by
feeding back acceleration or deceleration signals to the sender.
PBECC [47] takes a different approach by monitoring wireless
channel conditions on the user side and transmitting this infor-
mation back to the sender. APN [65] introduces application-
specific labels at the sender, enabling the network to adjust
forwarding strategies. Compared to these approaches, Co-RTV
employs explicit frame-level collaboration between the sender
and the BN, enabling precise and predictable latency control.

VIII. CONCLUSION

We introduce Co-RTV, a system addressing high latency in
RTV streaming through collaborative flow control and frame-
level latency management. Through the BN’s predictable
frame-level latency control and the sender’s scalable QoE-
driven flow control, Co-RTV achieves consistently low latency.
Extensive evaluations in both emulated networks and a 5G
testbed demonstrate the superior performance of Co-RTV, with
tail latency reductions of 69.1% and 70.5%, respectively.

Acknowledgements. We thank anonymous reviewers and
shepherd for their constructive feedback. This work was sup-
ported in part by the National Key R&D Program of China
(2022YFB2901800).



REFERENCES

[1] M. Torres Vega, C. Liaskos, S. Abadal, E. Papapetrou, A. Jain,
B. Mouhouche, G. Kalem, S. Ergüt, M. Mach, T. Sabol et al., “Im-
mersive interconnected virtual and augmented reality: A 5g and iot
perspective,” Journal of Network and Systems Management, vol. 28,
pp. 796–826, 2020.

[2] J. L. Rubio-Tamayo, M. Gertrudix Barrio, and F. Garcı́a Garcı́a, “Immer-
sive environments and virtual reality: Systematic review and advances
in communication, interaction and simulation,” Multimodal technologies
and interaction, vol. 1, no. 4, p. 21, 2017.

[3] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui,
“A measurement study on achieving imperceptible latency in mobile
cloud gaming,” in Proceedings of the 8th ACM on Multimedia Systems
Conference, 2017, pp. 88–99.

[4] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Congestion
control for web real-time communication,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 2629–2642, 2017.

[5] V. Singh, A. A. Lozano, and J. Ott, “Performance analysis of receive-
side real-time congestion control for webrtc,” in 2013 20th International
Packet Video Workshop. IEEE, 2013, pp. 1–8.

[6] Z. Meng, Y. Guo, C. Sun, B. Wang, J. Sherry, H. H. Liu, and M. Xu,
“Achieving consistent low latency for wireless real-time communications
with the shortest control loop,” in Proceedings of the ACM SIGCOMM
2022 Conference, 2022, pp. 193–206.

[7] Z. Meng, X. Kong, J. Chen, B. Wang, M. Xu, R. Han, H. Liu, V. Arun,
H. Hu, and X. Wei, “Hairpin: Rethinking packet loss recovery in edge-
based interactive video streaming,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
907–926.

[8] S. Wang, S. Yang, X. Kong, C. Wu, L. Jiang, C. Xu, C. Zhao, X. Yang,
J. Xiao, X. Liu et al., “Pudica: Toward {Near-Zero} queuing delay in
congestion control for cloud gaming,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
113–129.

[9] V. Arun and H. Balakrishnan, “Copa: Practical {Delay-Based} conges-
tion control for the internet,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 329–342.

[10] D. Ray, C. Smith, T. Wei, D. Chu, and S. Seshan, “Sqp: Congestion
control for low-latency interactive video streaming,” arXiv preprint
arXiv:2207.11857, 2022.

[11] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and
design of the google congestion control for web real-time communica-
tion (webrtc),” in Proceedings of the 7th International Conference on
Multimedia Systems, 2016, pp. 1–12.

[12] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin,
“Multi-objective congestion control,” in Proceedings of the Seventeenth
European Conference on Computer Systems, ser. EuroSys ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
218–235. [Online]. Available: https://doi.org/10.1145/3492321.3519593

[13] M. Moulay and V. Mancuso, “Experimental performance evaluation of
webrtc video services over mobile networks,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 541–546.

[14] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding operational 5g: A first measurement study
on its coverage, performance and energy consumption,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 479–494.

[15] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-
L. Zhang, “A first look at commercial 5g performance on smartphones,”
in Proceedings of The Web Conference 2020, 2020, pp. 894–905.

[16] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated look at 5g in the
wild: performance, power, and qoe implications,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021, pp. 610–625.

[17] J. Son, Y. Sanchez, C. Hellge, and T. Schierl, “Adaptable l4s congestion
control for cloud-based real-time streaming over 5g,” IEEE Open
Journal of Signal Processing, 2024.

[18] W. Yang, W. Du, B. Zhao, Y. Ren, J. Sun, and X. Zhou, “Cross-layer
assisted early congestion control for cloud vr applications in 5g edge
networks,” in 2024 IEEE Wireless Communications and Networking
Conference (WCNC), 2024, pp. 1–6.

[19] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ecn) to ip,” Tech. Rep., 2001.

[20] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan,
“{ABC}: A simple explicit congestion controller for wireless networks,”
in 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), 2020, pp. 353–372.

[21] B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White, “Low
Latency, Low Loss, and Scalable Throughput (L4S) Internet Service:
Architecture,” Internet Engineering Task Force, Internet-Draft draft-ietf-
tsvwg-l4s-arch-20, Aug. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-l4s-arch/20/

[22] D. Brunello, I. Johansson, M. Ozger, and C. Cavdar, “Low latency low
loss scalable throughput in 5g networks,” in 2021 IEEE 93rd vehicular
technology conference (VTC2021-Spring). IEEE, 2021, pp. 1–7.

[23] X. de Foy, R. Krishna, and T. Jiang, “MoQ relays for Support of
High-Throughput Low-Latency Traffic in 5G,” Internet Engineering
Task Force, Internet-Draft draft-defoy-moq-relay-network-handling-
03, Feb. 2025, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-defoy-moq-relay-network-handling/03/

[24] C. F. Jennings, S. Nandakumar, and R. Barnes, “End-to-End Secure
Objects for Media over QUIC Transport,” Internet Engineering Task
Force, Internet-Draft draft-jennings-moq-secure-objects-02, Feb. 2025,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-jennings-moq-secure-objects/02/

[25] K. Zarifis, S. Jaiswal, I. Purushothaman, J. Varsanik, A. Tiwari,
and M. Joras, “SCONEPRO Taxonomy of throttling policies used
worldwide,” Internet Engineering Task Force, Internet-Draft draft-zarifis-
scone-taxonomy-00, Mar. 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-zarifis-scone-taxonomy/00/

[26] Z. Jia, Y. Zhang, Q. Li, and X. Zhang, “Tackling bit-rate variation
of rtc through frame-bursting congestion control,” in 2024 IEEE 32nd
International Conference on Network Protocols (ICNP). IEEE, 2024,
pp. 1–11.

[27] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Win-
stein, “Salsify:{Low-Latency} network video through tighter integration
between a video codec and a transport protocol,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018, pp. 267–282.

[28] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X. Xie,
H. Ma, and X. Chen, “Learning to coordinate video codec with transport
protocol for mobile video telephony,” in The 25th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3300061.3345430

[29] NVIDIA., “Nvidia video codec sdk,” https://developer.nvidia.com/video-
codec-sdk, 2024.

[30] Z. Meng, T. Wang, Y. Shen, B. Wang, M. Xu, R. Han, H. Liu, V. Arun,
H. Hu, and X. Wei, “Enabling high quality {Real-Time} communi-
cations with adaptive {Frame-Rate},” in 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), 2023, pp.
1429–1450.

[31] Q. Chen and C. Li, “Argus: Real-time hq video decoding with cpu
coordinating on consumer devices,” in 2024 IEEE Real-Time Systems
Symposium (RTSS), 2024, pp. 43–56.

[32] M. Irazabal, E. Lopez-Aguilera, I. Demirkol, and N. Nikaein, “Dynamic
buffer sizing and pacing as enablers of 5g low-latency services,” IEEE
transactions on mobile computing, vol. 21, no. 3, pp. 926–939, 2020.

[33] 3GPP., “3GPP technical specification for lte.” https://www.
etsi.org/deliver/etsi ts/132400 132499/132450/18.00.00 60/ts
132450v180000p.pdf, 2024.

[34] 3GPP, “System architecture for the 5g system.” https://www.3gpp.org/,
2025.

[35] 3GPP, “3GPP TS 23.288: Architecture enhancements for 5g system
(5gs) to support network data analytics services,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.288,
December 2019, version 15.4.0. [Online]. Available: https://www.3gpp.
org/ftp/Specs/archive/23 series/23.288/23288-f40.zip

[36] T. Zhang, J. Wang, X. S. Hu, and S. Han, “Real-time flow scheduling in
industrial 5g new radio,” in 2023 IEEE Real-Time Systems Symposium
(RTSS), 2023, pp. 371–384.

[37] K. Wang and K. Psounis, “Scheduling and resource allocation in
802.11ax,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 279–287.

https://doi.org/10.1145/3492321.3519593
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-l4s-arch/20/
https://datatracker.ietf.org/doc/draft-defoy-moq-relay-network-handling/03/
https://datatracker.ietf.org/doc/draft-defoy-moq-relay-network-handling/03/
https://datatracker.ietf.org/doc/draft-jennings-moq-secure-objects/02/
https://datatracker.ietf.org/doc/draft-jennings-moq-secure-objects/02/
https://datatracker.ietf.org/doc/draft-zarifis-scone-taxonomy/00/
https://doi.org/10.1145/3300061.3345430
h
https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/18.00.00_60/ts_132450v180000p.pdf
https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/18.00.00_60/ts_132450v180000p.pdf
https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/18.00.00_60/ts_132450v180000p.pdf
https://www.3gpp.org/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.288/23288-f40.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.288/23288-f40.zip


[38] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on
ieee 802.11 ax high efficiency wlans,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 197–216, 2018.

[39] B. Bellalta, “Ieee 802.11 ax: High-efficiency wlans,” IEEE wireless
communications, vol. 23, no. 1, pp. 38–46, 2016.

[40] T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, “Time-sensitive
networking in ieee 802.11 be: On the way to low-latency wifi 7,”
Sensors, vol. 21, no. 15, p. 4954, 2021.

[41] ARISTA., “Wi-Fi 7: A Leap Towards Time-Sensitive
Networking.” https://www.arista.com/assets/data/pdf/Whitepapers/
Arista-Wi-Fi-7-White-Paper.pdf, 2024.

[42] C. Deng, X. Fang, X. Han, X. Wang, L. Yan, R. He, Y. Long, and
Y. Guo, “Ieee 802.11 be wi-fi 7: New challenges and opportunities,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2136–
2166, 2020.

[43] W. Sentosa, B. Chandrasekaran, P. B. Godfrey, H. Hassanieh, and
B. Maggs, “{DChannel}: Accelerating mobile applications with parallel
high-bandwidth and low-latency channels,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), 2023, pp.
419–436.

[44] 3GPP, “Study on scenarios and requirements for next generation access
technologies,” 3rd Generation Partnership Project (3GPP), Technical
report (TR) 36.331, 2017.

[45] A. Loch, I. Tejado, and J. Widmer, “Potholes ahead: Impact of transient
link blockage on beam steering in practical mm-wave systems,” in
European Wireless 2016; 22th European Wireless Conference. VDE,
2016, pp. 1–6.

[46] C. Perkins, “Sending RTP Control Protocol (RTCP) Feedback for
Congestion Control in Interactive Multimedia Conferences,” RFC 9392,
Apr. 2023. [Online]. Available: https://www.rfc-editor.org/info/rfc9392

[47] Y. Xie, F. Yi, and K. Jamieson, “Pbe-cc: Congestion control via
endpoint-centric, physical-layer bandwidth measurements,” in Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 451–464.

[48] B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White, “Low
Latency, Low Loss, and Scalable Throughput (L4S) Internet Service:
Architecture,” RFC 9330, Jan. 2023. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9330

[49] K. D. Schepper and B. Briscoe, “The Explicit Congestion Notification
(ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput
(L4S),” RFC 9331, Jan. 2023. [Online]. Available: https://www.
rfc-editor.org/info/rfc9331

[50] K. D. Schepper, B. Briscoe, and G. White, “Dual-Queue Coupled
Active Queue Management (AQM) for Low Latency, Low Loss, and
Scalable Throughput (L4S),” RFC 9332, Jan. 2023. [Online]. Available:
https://www.rfc-editor.org/info/rfc9332

[51] X. Lin, D. Yu, and H. Wiemann, “A primer on bandwidth parts in 5g
new radio,” 5G and Beyond: Fundamentals and Standards, pp. 357–370,
2021.

[52] Y. Lin, Y. Gao, and W. Dong, “Bandwidth prediction for 5g cellular
networks,” in 2022 IEEE/ACM 30th International Symposium on Quality
of Service (IWQoS). IEEE, 2022, pp. 1–10.

[53] D. Xu, A. Zhou, G. Wang, H. Zhang, X. Li, J. Pei, and H. Ma, “Tutti:
coupling 5g ran and mobile edge computing for latency-critical video
analytics,” in Proceedings of the 28th Annual International Conference
on Mobile Computing And Networking, 2022, pp. 729–742.

[54] W. Ye, X. Hu, S. Sleder, A. Zhang, U. K. Dayalan, A. Hassan, R. A.
Fezeu, A. Jajoo, M. Lee, E. Ramadan et al., “Dissecting carrier aggrega-
tion in 5g networks: Measurement, qoe implications and prediction,” in
Proceedings of the ACM SIGCOMM 2024 Conference, 2024, pp. 340–
357.

[55] R. A. K. Fezeu, C. Fiandrino, E. Ramadan, J. Carpenter, L. C. de Freitas,
F. Bilal, W. Ye, J. Widmer, F. Qian, and Z.-L. Zhang, “Unveiling
the 5g mid-band landscape: From network deployment to performance
and application qoe,” in Proceedings of the ACM SIGCOMM 2024
Conference, 2024, pp. 358–372.

[56] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee, “Exll: An extremely
low-latency congestion control for mobile cellular networks,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies, 2018, pp. 307–319.

[57] A. Nota, S. Saidi, D. Overbeck, F. Kurtz, and C. Wietfeld, “Context-
based latency guarantees considering channel degradation in 5g network

slicing,” in 2022 IEEE Real-Time Systems Symposium (RTSS), 2022, pp.
253–265.

[58] J. Zhang, F. Yang, T. Liu, Q. Wu, W. Zhao, Y. Zhang, W. Chen, Y. Liu,
H. Guo, Y. Ma et al., “{TECC}: Towards efficient {QUIC} tunneling
via collaborative transmission control,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
253–266.

[59] M. Palmer, M. Appel, K. Spiteri, B. Chandrasekaran, A. Feldmann, and
R. K. Sitaraman, “Voxel: Cross-layer optimization for video streaming
with imperfect transmission,” in Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies,
2021, pp. 359–374.

[60] OpenAirInterface, “Openairinterface 5g: Feature set documenta-
tion,” https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/
FEATURE SET.md, accessed: 2024-10-09.

[61] F. Kaltenberger, G. De Souza, R. Knopp, and H. Wang, “The openair-
interface 5g new radio implementation: Current status and roadmap,”
in WSA 2019; 23rd International ITG Workshop on Smart Antennas.
VDE, 2019, pp. 1–5.

[62] A. online, “Oai-ran.” [Online]. Available: https://openairinterface.org/
oai-5g-ran-project/

[63] WITCOMM., “xgproduct.” https://witcomm.net/xgstation, 2023.
[64] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2002, pp. 89–102.

[65] Z. Li, S. Peng, C. Xie, and S. Zhang, “Application-
aware IPv6 Networking (APN6) Encapsulation,” Internet
Engineering Task Force, Internet-Draft draft-li-6man-apn-ipv6-
encap-00, Mar. 2024, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-li-6man-apn-ipv6-encap/00/

[66] M. Scharf and S. Kiesel, “Nxg03-5: Head-of-line blocking in tcp and
sctp: Analysis and measurements,” in IEEE Globecom 2006. IEEE,
2006, pp. 1–5.

[67] Alibaba., “XQUIC Library released by Alibaba is a cross-platform
implementation of QUIC and HTTP/3 protocol.” https://github.com/
alibaba/xquic, 2022.

[68] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
conference of the ACM special interest group on data communication,
2017, pp. 183–196.

[69] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[70] I. Johansson and Z. Sarker, “Self-clocked rate adaptation for multime-
dia,” Tech. Rep., 2017.

[71] 3GPP., “TR 138 913 - V18.0.0 - 5G; Study on scenarios and require-
ments for next generation access technologies (3GPP TR 38.913 version
18.0.0 Release 18),” https://www.etsi.org/deliver/etsi tr/138900 138999/
138913/18.00.00 60/tr 138913v180000p.pdf, 2024.

[72] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE network, vol. 32, no. 2,
pp. 78–84, 2018.

[73] S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano, “5g ran
slicing for verticals: Enablers and challenges,” IEEE Communications
Magazine, vol. 57, no. 1, pp. 28–34, 2019.

[74] Y. Zhang, M. Chen, N. Guizani, D. Wu, and V. C. Leung, “Sovcan:
Safety-oriented vehicular controller area network,” IEEE Communica-
tions Magazine, vol. 55, no. 8, pp. 94–99, 2017.

[75] O. Project., “Open wireless router, an open-source project for embedded
operating systems based on Linux, primarily used on embedded devices
to route network traffic.” https://openwrt.org/, 2024.

[76] Y. Zhao, F. Yang, G. Lv, Q. Wu, Y. Liu, J. Zhang, Y. Peng, F. Peng,
H. Guo, Y. Chen et al., “{MARC}:{Motion-Aware} rate control for
mobile e-commerce cloud rendering,” in 2025 USENIX Annual Technical
Conference (USENIX ATC 25), 2025, pp. 217–232.

[77] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft, “Forward error correction (fec) building block,” Tech. Rep.,
2002.

[78] K. Park and W. Wang, “Afec: An adaptive forward error correction
protocol for end-to-end transport of real-time traffic,” in Proceedings 7th
International Conference on Computer Communications and Networks
(Cat. No. 98EX226). IEEE, 1998, pp. 196–205.

https://www.arista.com/assets/data/pdf/Whitepapers/Arista-Wi-Fi-7-White-Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista-Wi-Fi-7-White-Paper.pdf
https://www.rfc-editor.org/info/rfc9392
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9331
https://www.rfc-editor.org/info/rfc9331
https://www.rfc-editor.org/info/rfc9332
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://witcomm.net/xgstation
https://datatracker.ietf.org/doc/draft-li-6man-apn-ipv6-encap/00/
https://github.com/alibaba/xquic
https://github.com/alibaba/xquic
https://www.rfc-editor.org/info/rfc9000
https://www.etsi.org/deliver/etsi_tr/138900_138999/138913/18.00.00_60/tr_138913v180000p.pdf
https://www.etsi.org/deliver/etsi_tr/138900_138999/138913/18.00.00_60/tr_138913v180000p.pdf
https://openwrt.org/


[79] L. Vicisano, M. Watson, and M. Luby, “Forward Error Correction
(FEC) Building Block,” RFC 5052, Aug. 2007. [Online]. Available:
https://www.rfc-editor.org/info/rfc5052

[80] M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis, and
K. Rashmi, “Tambur: Efficient loss recovery for videoconferencing via
streaming codes,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 953–971.

[81] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h. 264/avc standard,” IEEE Transactions on
circuits and systems for video technology, vol. 17, no. 9, pp. 1103–1120,
2007.

[82] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[83] M. Dasari, K. Kahatapitiya, S. R. Das, A. Balasubramanian, and
D. Samaras, “Swift: Adaptive video streaming with layered neural
codecs,” in 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2022, pp. 103–118.

[84] Y. Cheng, Z. Zhang, H. Li, A. Arapin, Y. Zhang, Q. Zhang, Y. Liu,
K. Du, X. Zhang, F. Y. Yan et al., “{GRACE}:{Loss-Resilient}{Real-
Time} video through neural codecs,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp.
509–531.

[85] Y. Cheng, A. Arapin, Z. Zhang, Q. Zhang, H. Li, N. Feamster, and
J. Jiang, “Grace++: Loss-resilient real-time video communication under
high network latency,” arXiv preprint arXiv:2305.12333, 2023.

[86] Y. Zhou, T. Wang, L. Wang, N. Wen, R. Han, J. Wang, C. Wu, J. Chen,
L. Jiang, S. Wang et al., “{AUGUR}: Practical mobile multipath
transport service for low tail latency in {Real-Time} streaming,” in 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), 2024, pp. 1901–1916.

[87] S. Dhawaskar Sathyanarayana, K. Lee, D. Grunwald, and S. Ha,
“Converge: Qoe-driven multipath video conferencing over webrtc,” in
Proceedings of the ACM SIGCOMM 2023 Conference, 2023, pp. 637–
653.

https://www.rfc-editor.org/info/rfc5052

	Introduction
	Background and Motivation
	Background: RTV system's high latency
	Investigation of RTV system's high latency
	Limitations of existing solutions
	Opportunity: endpoint and network collaboration

	Co-RTV Design
	Co-RTV overview
	BN: predictable tail latency control
	Principle of frame-drop decision
	Frame information embedded at the RTV sender
	Bandwidth estimation at the BN
	Frame dropping at the BN
	Feedback to sender

	Sender: scalable QoE-driven flow control
	Scalable flow control design space.
	Encoding strategy


	Co-RTV Implementation
	Evaluation
	Experiment Setup
	End-to-End Performance
	5G testbed Experiments
	Co-RTV overhead
	Evaluation Conclusion

	Discussion and Future Work
	Related Work
	Conclusion
	References

