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Abstract. Emerging mobile short video services pose different yet strin-
gent performance requirements compared to traditional long video ser-
vices. Content providers (CPs) aspire to a better user-perceived Quality
of Experience (QoE) at the application layer, which is imperceptible to
the Content Delivery Network (CDN), which monitors Quality of Service
(QoS) at the transport layer. The mismatch between QoS and QoE leads
to a complex and diverse mapping correlation between the two metrics.
In this paper, we illustrate the QoS-QoE mapping correlation in mobile
short video services. Although data-driven QoE prediction models can
achieve the desired accuracy, complex scenario features are proven to be
necessary, and the prediction model still lacks interpretability. Deeper
quantitative analysis shows that the correlation becomes complex and
diverse when resources are insufficient. The clustering-based prediction
framework can successfully summarize scenario features and perform
QoE prediction based on QoS metrics alone. Furthermore, we propose
predictive QoE-based CDN scheduling. Experiments show that compared
to scheduling with QoS metrics, QoE-aware scheduling achieves an aver-
age QoE improvement of 9.9% under comparable QoS quality.

Keywords: QoE prediction - CDN scheduling - Mobile short video.

1 Introduction

Mobile short video services have experienced explosive growth over the past
decades. Currently, TikTok alone has over 100 million monthly active users
globally [8]. Due to the short playback time of a single video, the performance
requirements for such services differ significantly from those of long video ser-
vices and become more stringent [29, 28]. The Content Delivery Network (CDN)
is widely employed to ensure a promised user experience, by deploying nodes
closer to users to reduce response time. Quality of Service (QoS) and Quality
of Experience (QoE) are commonly adopted metrics to evaluate CDN perfor-
mance and user experience from different layers and locations. QoS relates to
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network performance, such as latency and throughput, which can be monitored
from servers of CDNs. QoE focuses on the video playback experience, including
the startup delay, stall counts, and bitrate selection, which is only obtained from
applications on end devices. CDNs focus on QoS to schedule traffic to specific
nodes, whereas users and content providers are more concerned with QoE.

Due to the hierarchical layer and locational mismatch between QoS and QoE,
the correlation between these two factors often exhibits complex, non-linear char-
acteristics. While it is generally believed that good QoS leads to good QoE, prior
works indicate that in certain situations, QoE is insensitive to QoS improve-
ments, and good QoS might even result in degraded QoE [26]. This results in
CDNs’ efforts for QoS optimization not always leading to QoE improvements,
creating a significant imbalance between investment cost and performance gain.
As a result, CDNs are strongly motivated to investigate the complex QoS-QoE
mapping correlation and thereby optimize the QoE of short video playback.

Prior works [18,4,17] have proposed QoS-based objective QoE prediction
to optimize QoE. However, these works operated at the user side and focused
on a single stream to perform bitrate selection or CDN multihoming. CDNs,
focusing on the general correlation between QoE and QoS among multi-user and
multi-stream to guide traffic scheduling, cannot benefit from these works.

This paper, from the CDN perspective, investigates the correlation between
QoS and QoE. Based on the dataset involving both QoS and QoE metrics (§3.1),
we employ an XGBoost model to perform QoE prediction at an aggregated
level (§3.2). However, additional scenario features are proven to be necessary
for accurate prediction, and the data-driven model still lacks interpretability
for practical deployment. Consequently, we conduct quasi-experimental design
(QED) to illustrate the correlation between two metrics (§3.3). The correlation
pattern is portrayed by pattern clustering under different scenarios, which is
shown to become complex and diverse when resources are insufficient during
traffic peaks. The clustering approach is validated to summarize the scenario
features successfully and perform QoE prediction based on QoS metrics alone.

Although the specific cluster patterns may vary depending on different config-
urations from content providers, and the specified prediction model might be only
applicable for a single provider, the proposed clustering-based prediction frame-
work demonstrates the generalizability to summarize the scenario features on
any given configuration. Therefore, the data sharing between content providers
and CDN vendors indicates considerable potential for enhancing users’ QoE.

Based on the characterization of the QoS-QoE mapping correlation, we pro-
pose QoE prediction-based CDN scheduling (§4). Simulation experiments demon-
strate that compared to traditional QoS-based scheduling, QoE-based scheduling
achieves an average QoE improvement of 9.9% at stall count under comparable
QoS quality, reaching 73.3% of optimal improvement. In summary, the contri-
butions of our work are as follows:

— We observe the complex and non-linear correlation between QoE and QoS.
The correlation patterns under different scenarios are illustrated to exhibit
diversity when resources are insufficient during traffic peaks.
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Fig. 1: QoS and QoE for mobile short video services.

— We propose a clustering-based prediction framework to extract and sum-
marize complex scenario features, and thereby predicting the QoE metrics
based on QoS metrics alone.

— We present predictive QoE-based CDN scheduling. Simulation experiments
show that compared to scheduling for QoS, QoE-based scheduling achieves
an average QoE improvement of 9.9% under comparable QoS quality.

2 Background and Motivation

2.1 Background

Mobile short video services. Emerging mobile short video services have im-
posed significantly different and more stringent performance requirements com-
pared to traditional long videos [28,29]. First, mobile short video services re-
quire shorter startup delays to enable users to continuously browse and discover
content of interest. Consequently, short videos typically adopt lower bitrates.
Adaptive Bitrate Streaming (ABR) algorithms designed for long videos struggle
to converge quickly, thereby exhibiting poor performance. Second, stall events
impact user experience more severely in short video services. Even a single stall
event during playback reduces the video viewing percentage by 45%, with in-
creased stall event frequency amplifying this decline.

QoS-Based CDN Scheduling. CDN is widely applied in mobile short
video services to ensure optimal user viewing experiences. CDNs typically de-
ploy edge nodes closer to end users to minimize video transmission latency and
response time. By scheduling traffic from different regions and applications to
specific nodes, CDNs manage to optimize users’ transmission performance. Such
QoS metrics (e.g., latency, bandwidth, and loss rate) operate at the transport
layer and can be directly monitored by CDNs. However, users and short video
content providers prioritize QoE metrics (e.g., stalls, startup delay, bitrate) at
the application layer, which CDNs cannot directly observe.

QoS-QoE Mismatch. As illustrated in Fig. 1, two fundamental mismatches
exist between QoS and QoE:

— Hierarchical mismatch. QoS is typically implemented within the transport
layer of the TCP protocol stack, evaluating data transmission quality over
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the network and strongly correlating with network conditions. QoE, con-
versely, reflects users’ experience at the application layer, influenced not only
by network quality but also by end-device capabilities and other features.
— Locational mismatch. QoS is monitored and managed by the server. The
protocol stack marks packets to enable priority handling and service quality
assurance. QoE, however, originates from users’ interactions with applica-
tions on the client side. As the server cannot perceive QoE, it can only
optimize QoS. However, the client cares more about QoE than QoS.

2.2 Motivation

Due to the QoS-QoE mismatch, the mapping correlation between QoS and QoE
is complex, nonlinear, and influenced by various factors. Although better QoS is
generally believed to yield better QoE, prior works [26] indicate that QoE may
be insensitive to QoS improvements under certain conditions or even deteriorate.
Conversely, degraded QoS also does not necessarily lead to reduced QoE.

CDNs improve user access performance and stability by scheduling traffic
to the nearest edge nodes with optimal QoS. However, the aforementioned com-
plexities lead to two critical issues in QoS-based CDN scheduling: (1) Suboptimal
video QoE for users. The QoS-based scheduling approach fails to achieve the in-
tended QoE optimal scheduling results. (2) Inefficient resource utilization for
CDNs. CDNs’ efforts to construct high-performance nodes are not effectively
converted to a superior user experience, resulting in a significant imbalance be-
tween investment costs and performance gains.

These challenges motivate CDNs to investigate the QoS-QoE mapping corre-
lation in mobile short video applications, thereby guiding QoE-based scheduling.

3 QoS-QoE Mapping

3.1 Dataset

We first introduce the QoS and QoE datasets in this work. The QoS data was
collected from a leading CDN vendor in China at the server side, while the QoE
data was collected from a leading short video application at the user side. The
dataset contains more than 4 million entries, covering requests from 3 short video
domain names in 3 ISPs to 276 CDN nodes in 31 provinces over 2 months. Due to
the different data collection granularity, all data was aggregated to the average
value at the granularity of <domain name, ISP, user province, node province>
at each 10-minute time interval.

Metadata. Both the CDN and the short video application recorded meta-
data of user requests during the covered period, including server location, client
region, requested domain name, and request timestamp. Although the granular-
ity differs between the two sources, the data can be matched after aggregation
at the same granularity.

QoS metrics. Major QoS metrics include connection setup time, retransmis-
sion rate, and throughput. Since QoFE information is inaccessible, CDNs analyze
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Table 1: Prediction accuracy with different input features

Features Startup Delay Stall Count
QoS 6.0% 23.7%
QoS + Time 4.8% 14.7%
QoS + ISP 5.7% 20.1%
QoS + Domain name 5.0% 15.5%
QoS + User location 4.2% 14.2%
QoS + Time + ISP + Domain + User location 3.1% 8.7%

QoS metrics from the TCP stack on their nodes. At the start of video transmis-
sion, the user sets up a TCP connection through a three-way handshake with the
CDN node. The CDN node measures connection setup time from receiving the
SYN packet to receiving the first ACK packet (approximately one Round-trip
time), serving as an indicator of the link latency. Throughout transmission, the
link’s loss rate is calculated as total retransmitted data divided by total trans-
mitted data. Link bandwidth is represented by throughput, calculated as total
transmitted data divided by total transmission time. These QoS metrics reflect
link performance at the transport layer.

QoE metrics. Major QoE metrics include startup delay and stall count.
Startup delay refers to the delay from when a video is requested to when the
first frame begins playing, indicating user wait time. Stall count indicates the
average number of stalls per 100 seconds of playback, reflecting video fluency.
These two metrics represent application-layer playback quality. The dataset does
not include the bitrate metric, since it is not prioritized in short video services,
as discussed in §2.1. Future work could incorporate bitrate into consideration to
explore the three-way trade-off between startup delay, stalling, and video quality.

3.2 Data-driven Prediction Model

To investigate the relationship between QoS and QoE metrics, we first attempt to
predict QoE using existing QoS metrics. To achieve it, we employ XGBoost [5] as
the mapping relationship prediction model. For the loss function, Mean Absolute
Percentage Error (MAPE) [20] was selected to evaluate prediction performance.
A smaller MAPE value indicates smaller error and higher prediction accuracy.
We train two independent models for two QoE metrics with the same input.

As shown in the Tab.1, prediction using QoS metrics alone yields signifi-
cant errors, suggesting other scenario factors may influence QoE performance.
To analyze the impact of scenario factors, we calculate the mutual information
between scenario features and QoS/QoE metrics, as shown in Fig. 2.

Higher mutual information (i.e., larger than 0.1) indicates a stronger rela-
tionship between the feature and metric. Temporal features are more significant
at daily and hourly granularity, which primarily affects QoS metrics due to traf-
fic peaks. Conversely, spatial features, including the location of users and nodes,
exhibit a strong correlation with both QoS and QoE metrics. The domain name
variation, which is attributed to the access type (i.e., Wi-Fi and cellular), and the
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Fig.2: Mutual Information between Fig.3: Feature importance in the pre-
features. diction model.

ISP variation, which is attributed to the infrastructure construction, influence
the corresponding QoS metric and, thereby, the corresponding QoE metric.

Based on this analysis, attempts that combine hourly time features, user
location features, and domain features with QoS metrics for model prediction
achieve MAPE below 10%, as shown in Tab.1. Compared to predicting by QoS
alone, incorporating scenario factors significantly reduces startup delays and stall
count prediction error by 48.3% and 63.3%, respectively. This demonstrates that
scenario factors significantly impact the QoS-QoE mapping.

3.3 QED Analysis

The previous data-driven prediction model lacks interpretability for deployment,
and the correlation between QoE and QoS remains unrevealed. We further in-
vestigate how QoS influences corresponding QoE in different scenarios.

Univariate mapping function. Intuitively, different QoS metrics have
varying importance for distinct QoE metrics. For example, startup delay is
mostly impacted by connection setup time to fetch the first frame, while stall
events are caused by insufficient playback buffer under low throughput. The
feature importance analysis illustrated in Fig.3 confirms this observation.

We employ Quasi Experimental Design (QED) [14] to study how scenario
and temporal features affect the quantitative relationships in two univariate
functions: <connection setup time, startup delay> and <throughput, stutter>.
For a fixed network link (static domain name, ISP, node region, user region), we
derive a univariate function f that maps a single QoS metric to a single QoE
metric under controlled scenario conditions:

QoE; = f(QoS;i|scenario) (1)
This conditional function can be plotted as a 2D curve. With our dataset and
prediction model, we generated 1,872 conditional functions and plotted their
curves, representing QoS-QoE mappings under diverse scenarios.

Clustering. To identify different and complex patterns, we cluster these
curves based on shape similarity and distance. The shape similarity indicates
the QoS-QoE mapping correlation, while the distance variation indicates the
scenario features, especially the geographical distance of a link. Compared to
Euclidean distance, we employ Dynamic Time Warping (DTW) distance [3],
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Fig. 6: Throughput division. Fig.7: Daily data transmitted per TCP stream.

which prioritizes shape alignment over absolute position. K-Medoids clustering
[12], which is robust against outliers, is applied with the optimal cluster count
determined by the elbow method using the Sum of Squared Errors (SSE).

The clustering results for <connection setup time, startup delay>, <through-
put, stall count> are shown in Fig. 4 and Fig. 5. For connection setup time and
startup delay, four categories can be identified based on shape similarity, which
can be further divided into eight categories based on both shape and distance.
The shape of the mapping curve can be categorized as one of four types: (a)
plateau, (b) linear, (¢) bimodal, or (d) unimodal. Correlation between through-
put and stall count can be categorized into three classes based on shape and
further divided into six classes based on both shape and distance. The shape of
the mapping curve can be categorized as: (a) plateau, (b) linear, or (¢) unimodal.

Clustering result analysis. As we can find in the two figures, when re-
sources are abundant (low delay or high throughput), QoS-QoE relationships are
approximately linear. Under resource scarcity (e.g., high delay or low through-
put in peak hours), the relationship becomes nonlinear and complex, sometimes
even showing QoE degradation despite QoS improvement.

We observe a transition point (dashed line) which marks the division between
traffic peak (11h-14h, 19h-22h) and off-peak QoS metrics. As shown in Fig.6,
the transition point can be defined as the average of the upper quartile (Q3) of

throughput at peaks and the lower quartile (Q1) of throughput at off-peaks.

Thrpttran = Q3 (Thrptpeak) — Ql (Thrptoff*peak) (2)

2
The transition point represents the threshold where network resources shift
from abundant to constrained, which we empirically observed to be the inflection
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Table 2: Prediction accuracy of different clusters.
Cluster 1 2 3 4 5 6 7 8
Startup delay 3.2% 2.3% 2.3% 2.8% 3.2% 2.5% 4.4% 2.5%

Stall count 7.7% 10.1% 9.8% 6.9% 7.0% 8.0%

point where application-layer bitrate adaptation strategies become most active.
Fig. 7 illustrates the average amount of transmitted data per TCP stream in a
day. During peak hours, the amount of data transmitted by users decreases sig-
nificantly. In order to ensure video stability and an optimal viewing experience,
applications may have adopted a lower bit rate for short videos. This explains
why QoE metrics may improve even when the QoS metrics are poor in bimodal
and unimodal patterns.

Clustering validation. Clustering groups scenario features (e.g., domain
names, user and node provinces) which have a similar impact on QoE metrics
into a single category. As a result, QoE metrics within each clustering group do
not rely on the scenario features and can be accurately predicted using only QoS
metrics. To validate this, separate models were trained for each clustering group
to predict corresponding QoE metrics. The prediction errors for each cluster in
terms of the startup delay and the stall count are shown in Tab. 2.

The average QoE metric prediction errors of all clusters reach 2.9% for the
startup delay and 8.25% for the stall count, which is lower than the prediction
error of the model based on QoS and scenario factors in §3.2. This result suc-
cessfully proves that the clustering approach extracts and summarizes scenario
features. Consequently, the correlation between QoS and QoE is straightforward
within each clustering group.

3.4 Summary

Complex QoS-QoE mapping correlation. Data collected from CDNs and
short-video applications indicates a complex correlation between QoS metrics
and QoE metrics. Quantitative analysis and clustering show that when resources
are limited, the mapping correlation becomes diverse due to the intricate bit rate
strategies employed by applications.

Clustering-based predictive framework. Scenario features can be extracted
and summarized through clustering. The straightforward QoS-QoE mapping can
be subsequently established inside each cluster.

4 QoE-aware CDN Scheduling

4.1 Implications for CDN Scheduling

Based on prior analysis, the relationship between QoS and QoE is not a simple
linear mapping and may vary with other scenario factors such as time and user
region. Consequently, solely QoS-based CDN scheduling does not always guar-
antee optimal QoE. Insights from QoS-QoE quantitative analysis can optimize
CDN scheduling in two aspects:



QoS-QoE Mapping 9

Algorithm 1: QoE-based CDN scheduling.
Input: Traffic demand Tj; Node capacity C;; QoS Metrics QoS;;; Scenario
Factors Fj;.
Output: Scheduling strategy X;;.
1 for j € M,i € N do
2 Model;; < Clustering(F;;);
3 Dij — Modelij(QOSij)
4
5

end
Solve the optimization problem Obj.3 to find X;.

Performance differentiated node utilization strategies. Fig.4 and Fig.5
illustrate distinct curve shapes for different mapping types. The effectiveness of
QoS improvements on QoE enhancement varies across these curves. Conversely,
reducing QoS in certain scenarios does not always degrade QoE. Thereby, CDNs
can actively schedule specific traffic to nodes with poorer network quality with-
out compromising user experience, while ensuring efficient resource utilization
simultaneously.

Time differentiated scheduling strategies. The mapping correlation
pattern is divided into two segments according to the resource supplement at dif-
ferent time periods. As a result, CDNs must adjust scheduling strategies accord-
ingly. For example, for plateau shaped correlation (Fig. 4(a) and 5(a)), aggres-
sive scheduling strategies (allocating high-QoS resources) significantly improve
QoE during off-peak hours. Whereas during peak hours, conservative schedul-
ing strategies (using low-QoS resources) minimally impact their QoE, saving
high-QoS resources for other traffic.

4.2 Scheduling Experiment

To validate the improvement in user experience through QoE-aware scheduling,
we conducted simulated experiments using the same dataset from §3.1, which
covers 3 ISPs, 31 provinces, and 276 CDN nodes, constituting a total of four
million data entries. We ran the CDN scheduling problem six times each day for
a consistent 30-day period in a month, during traffic peaks (12 AM, 8 PM, and
10 PM) and off-peak times (9 AM, 3 PM, and 5 PM).

CDN Traffic Scheduling Problem. For given traffic demand 7j in each
province j € M, CDN scheduling computes the scheduling strategy X;; that
indicates the amount of traffic from province j scheduled to the specific node
i € N. In general, the traffic scheduling problem can be formulated as follows.

Irgn Z D” . X”
¥

s.t. ZXij < C;, Vi € N; (3)
J

> Xi =Ty, Vje€M.
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where C; denotes the capacity of each node 7 and the quality matrix D charac-
terizes the quality penalty (i.e., latency, throughput) for traffic from province j
to node 7. The optimization problem aims to find the optimal strategy X;; that
minimizes the overall quality penalty while ensuring no nodes are overloaded
and all traffic demands are scheduled.

Baseline. The ultimate goal for CDN scheduling is to optimize real QoE
performance, which is only collectible after the transmission. Thereby, the opti-
mization goal Obj.3 can be formulated in multiple ways, according to the def-
inition of the quality matrix D. Specifically, three types of D are defined in
the simulation. (1) QoS-based: D;; is computed by the connection setup latency
Conn;; and throughput T'hrpt;; monitored by CDN. We set this method as the
baseline because such metrics optimize the overall QoS performance, which is
adopted by CDNs currently. (2) predicted QoE-based: D;; is predicted based on
QoS performance, through the pre-trained prediction model corresponding to
the scenario features, as introduced in §3.3. This method promises CDNs to op-
timize the overall QoE performance directly under limited prediction error. (3)
real QoE-based: D;; is collected from QoE metrics for real traffic from province
j to node i, according to the dataset. This method shows the optimal QoE per-
formance can be achieved when the QoE prediction model predicts completely
accurately. The workflow of the scheduling is illustrated in Alg.1.

QoE Improvement As shown in Fig. 8, predictive QoE-aware scheduling
can effectively improve all of the system’s QoE metrics. Since each QoE metric
has a different scale, it is normalized to facilitate comparison of the improvement
effect among different QoEs. A smaller value is better for each type of metric. The
simulation based on predicted QoE achieves an average improvement of 9.9% in
stall count and utilizes 73.3% of the optimal improvement space. Meanwhile, the
improvement in startup delay is 2.67%. The improvement is moderate because
startup delay is highly related to connection latency, which is proportional with
geographically traversed distance and thereby hard to improve overall. The opti-
mal startup delay improvement is only 3.8% and predictive QoE-based schedul-
ing utilizes 71.2% of the improvement space. The QoE improvement does not
rely on QoS improvement. As shown in Fig. 9, the QoS quality of predictive or
real QoE-aware scheduling remains comparable with QoS-based scheduling.

5 Related Work

Subjective QoE prediction. The complex composition of QoE contains pa-
rameters in both subjective and objective dimensions [24]. Subjective QoE is
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strongly correlated with users’ subjective perceptions and is difficult to assess.
A common method to get subjective QoE is mean opinion score (MOS) [6], which
is costly and poorly scalable. [25] tried to establish the correlation between QoS
and subjective QoE but did not consider application performance. [10] predicted
MOS with objective QoE. Subjective QoE has much less relevance to CDNs.

Objective QoE prediction. Objective QoE is easier to portray than sub-
jective QoE. Existing work has examined the relationship between QoS and
objective QoE from several perspectives. [19,9] estimated QoE performance by
active probing. [7,13,21, 18] performed QoE prediction in encrypted traffic. [1]
used passive measurements of QoS to predict objective QoE. [15,11,2,22, 27,
16, 23] performed the prediction based on machine learning models and achieved
better results. However, these works either consider only the overall performance
of QoS, which fails to meet CDNs’ need for granular quality information, or fo-
cus on CDN multihoming or bitrate selection from the user perspective, which
is inapplicable to CDNs.

6 Conclusion

This work investigated the QoS-QoE mapping correlation in mobile short video
services, which is observed to exhibit complexity and diversity under vary-
ing scenarios, especially when resources are insufficient during traffic peaks. A
clustering-based prediction framework is presented to extract and summarize
scenario features, and thereby predicting the QoE metrics based on QoS metrics
alone. The subsequently proposed predictive QoE-based CDN scheduling attains
an average QoE improvement of 9.9% under comparable QoS quality.

Acknowledgments. We thank all anonymous reviewers for their constructive
feedback. This work was supported in part by the National Key R&D Program
of China (2022YFB2901800). Gaogang Xie is the paper’s corresponding author.

References

1. Aggarwal, V., Halepovic, E., Pang, J., et al.: Prometheus: Toward quality-of-
experience estimation for mobile apps from passive network measurements. In:
HotMobile’ 14

2. Balachandran, A., Sekar, V., Akella, A., et al.: Developing a predictive model of
quality of experience for internet video. In: ACM SIGCOMM (2013)

3. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: 3rd KDD (1994)

4. Bronzino, F., Schmitt, P., Ayoubi, S., Martins, G., Teixeira, R., Feamster, N.:
Inferring streaming video quality from encrypted traffic: Practical models and de-
ployment experience. SIGMETRICS 3(3), 1-25 (2019)

5. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: ACM
SIGKDD. p. 785-794. KDD ’16 (2016)

6. Choe, J.H., Jeong, T.U., Choi, H., et al.: Subjective video quality assessment meth-
ods for multimedia applications. Journal of Broadcast Engineering 12 (03 2007)



12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Chuanging Lin et al.

Dimopoulos, G., Leontiadis, 1., Barlet-Ros, P., Papagiannaki, K.: Measuring video
qoe from encrypted traffic. p. 513-526. IMC ’16 (2016)

. Doyle, B.: Tiktok statistics, wallaroomedia.com/blog/social-media/tiktok-

statistics/

Ge, C., Wang, N.: Real-time qoe estimation of dash-based mobile video applications
through edge computing. In: IEEE INFOCOM 2018 (2018)

Ito, Y., Tasaka, S.: Quantitative assessment of user-level qos and its mapping.
IEEE Transactions on Multimedia 7(3) (2005)

Jiang, J., Sekar, V., Milner, H., Shepherd, D., Stoica, 1., Zhang, H.: Cfa: A practical
prediction system for video qoe optimization. p. 137-150. NSDI'16 (2016)
Kaufmann, L., Rousseeuw, P.: Clustering by means of medoids. Data Analysis
based on the L1-Norm and Related Methods pp. 405-416 (01 1987)

Khokhar, M.J., Ehlinger, T., Barakat, C.: From network traffic measurements to
qoe for internet video. In: 2019 IFIP Networking (2019)

Krishnan, S.S., Sitaraman, R.K.: Video stream quality impacts viewer behavior:
Inferring causality using quasi-experimental designs. In: IMC 2012 (2012)

Lin, Y.T., Oliveira, E.M.R., Ben Jemaa, S., Elayoubi, S.E.: Machine learning for
predicting qoe of video streaming in mobile networks. In: 2017 IEEE ICC (2017)
Liu, J., Waz, M., Chung, J., et al.: Estimating video quality using coarse-grained
features: Insights and limitations from gaussian mixture models. CoNEXT ’24
(2024)

Mangla, T., Halepovic, E., Ammar, M., et al.: Using session modeling to estimate
http-based video qoe metrics from encrypted network traffic. IEEE TNSM (2019)
Mazhar, M.H., Shafiq, Z.: Real-time video quality of experience monitoring for
https and quic. In: IEEE INFOCOM 2018 (2018)

Miranda, G., Macedo, D.F., Marquez-Barja, J.M.: A qoe inference method for dash
video using icmp probing. In: 2020 16th CNSM (2020)

de Myttenaere, A., Golden, B., Grand, B.L., Rossi, F.: Mean absolute percentage
error for regression models. Neurocomputing (jun 2016)

Orsolic, 1., Pevec, D., Suznjevic, M., et al.: A machine learning approach to clas-
sifying youtube qoe based on encrypted network traffic. Multimedia Tools Appl.
(2017)

Shah, A., Bran, J., Zarifis, K., Bedi, H.: Ssqoe: Measuring video qoe from the
server-side at a global multi-tenant cdn. In: PAM 2022. p. 600-625 (2022)
Sharma, T., Mangla, T., Gupta, A., Jiang, J., Feamster, N.: Estimating webrtc
video qoe metrics without using application headers. IMC 23, ACM (2023)

Wu, W., Arefin, A., Rivas, R., al., N.: Quality of experience in distributed inter-
active multimedia environments: Toward a theoretical framework. In: 17th ACM
Multimedia. p. 481-490. MM ’09 (2009)

Xiao, Z., Xu, Y., Feng, H., et al.: Modeling streaming qoe in wireless networks with
large-scale measurement of user behavior. In: 2015 IEEE GLOBECOM (2015)
Zhang, H., Zhou, A., Hu, Y., Li, C., Wang, G., Zhang, X., Ma, H., Wu, L., Chen,
A., Wu, C.: Loki: Improving long tail performance of learning-based real-time video
adaptation by fusing rule-based models. In: 27th MobiCom. p. 775-788 (2021)
Zhang, Y., Cheng, S., Guo, Z., Zhang, X.: Inferring video streaming quality of
real-time communication inside network. IEEE TCSVT (2024)

Zhang, Y., Li, P., Zhang, Z., Bai, B., Zhang, G., Wang, W., Lian, B.: Challenges and
chances for the emerging short video network. In: IEEE INFOCOM 2019 (2019)
Zhang, Y., Liu, Y., Guo, L., Lee, J.Y.B.: Measurement of a large-scale short-video
service over mobile and wireless networks. IEEE TMC pp. 1-1 (2022)



