
Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency
under Uncertainties in Large-Scale Edge CDNs

CHUANQING LIN∗ and GERUI LV∗, University of Chinese Academy of Sciences, China
FUHUA ZENG†, HANLIN YANG, JUNWEI LI, XIAODONG LI, and JINGYU YANG, Alibaba
Cloud, China
YU TIAN, University of Chinese Academy of Sciences, China
QINGHUA WU† and ZHENYU LI, University of Chinese Academy of Sciences, China and Purple
Mountain Laboratories, China
GAOGANG XIE†, University of Chinese Academy of Sciences, China and CNIC, CAS, China

Large-scale edge Content Delivery Networks (CDNs) provide low-latency content access services and suffer
from high bandwidth costs. While previous studies have sought to optimize bandwidth costs under percentile
billing, the efficacy is compromised due to the pervasive uncertainty inherent in practical systems, including
traffic demand dynamics, performance-constrained scheduling bias, and systemic scheduling deviations. Such
uncertainties can result in large gaps among optimal, expected, and actual utilization of massive vulnerable
and heterogeneous edge nodes. To address these uncertainties, we propose Oceanus, a cost-effective traffic
scheduling system for large-scale edge CDN systems. Oceanus decouples the bandwidth planning problem and
performs on multiple timescales. In addition, Oceanus coordinates bandwidth planning with flow scheduling
through the bidirectional feedback scheme. Oceanus further utilizes nodes with minimal marginal cost to
reduce additional bandwidth cost. Extensive experiments in a trace-driven testbed and real-world deployment
confirm the effectiveness of Oceanus. Compared to the state-of-the-art scheduling method, Oceanus achieves
79.4% (vs. 51.5%) of optimum cost reduction and reduces 21.4% (vs. 8.1%) bandwidth costs.

CCS Concepts: • Networks→ Network management; Traffic engineering algorithms; Network re-
sources allocation.

Additional Key Words and Phrases: CDN, Traffic Engineering, Flow Scheduling

ACM Reference Format:
Chuanqing Lin, Gerui Lv, Fuhua Zeng, Hanlin Yang, Junwei Li, Xiaodong Li, Jingyu Yang, Yu Tian, Qinghua
Wu, Zhenyu Li, and Gaogang Xie. 2025. Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under
Uncertainties in Large-Scale Edge CDNs. Proc. ACM Netw. 3, CoNEXT4, Article 36 (December 2025), 25 pages.
https://doi.org/10.1145/3768983

1 Introduction
Content Delivery Network (CDN) aims to provide low-latency data access services to geo-distributed
client users. Recently, emerging new applications (e.g., live video streaming [24, 59]) have posed
various and stringent latency requirements (e.g., ensuring that end-to-end latency is less than 150
ms [33, 40]) to modern CDNs. To ensure the transmission performance meets the service level
agreements (SLAs), CDNs tend to deploy massive edge nodes that are much closer to users (i.e., at
each city). However, these edge nodes are vulnerable and heterogeneous, with limited bandwidth
capacity and hardware performance, thus requiring fine-grained and careful management.
∗Co-first authors.
†Corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2834-5509/2025/12-ART36
https://doi.org/10.1145/3768983

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

https://doi.org/10.1145/3768983
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3768983

36:2 Chuanqing Lin et al.

Concurrently, the data transmission from emerging applications grows rapidly [1], posing a
higher pressure on bandwidth costs for CDN vendors. In this context, the scheduling center, which
manages the utilization of edge nodes by assigning user requests to specific nodes, is carrying
increasing responsibility for (i) ensuring compliance with performance SLAs while (ii) minimizing
bandwidth costs. Due to the computational complexity of joint optimization, most studies decouple
and optimize the two goals sequentially. Among them, many works [7, 14, 45, 52, 58, 64] have
focused on reducing bandwidth costs, especially under the percentile billing scheme that serves
as the industry standard. This billing scheme typically takes the 95th percentile (P95) of node
bandwidth utilization samples (corresponding to 5-minute time slots) as the final billable bandwidth
in a billing cycle (e.g., a month).

00 04 08 12 16 20 00
hour / h

0.0

0.5

1.0

No
rm

. N
od

e
Bw

 U
til

.

original

optimized
Cost Saving

original
optimized

Fig. 1. Example for the 95th billable
bandwidth optimization.

The key to reducing overall bandwidth costs is to minimize
billable (P95) bandwidth peaks and maximize the utilization
of the remaining 5% of uncharged time slots (referred to as
augmentation) for each node [14, 45](Fig. 1). To achieve this,
existing scheduling methods follow a general workflow: (i)
Bandwidth planning: Initialize the target billable bandwidth for
each node based on estimated traffic demands at the beginning
of the billing cycle, then heuristically select nodes to augment
to meet actual traffic demands in real-time. (ii) Flow scheduling:
Adjust the scheduling mapping that assigns traffic to nodes
that have sufficient bandwidth and meet SLA requirements.

However, our empirical evidence shows that even the state-of-the-art scheduling method can only
achieve 51.5% of the theoretical optimum in terms of cost savings (§2.3), resulting in millions of dollars
of additional bandwidth expenditure. The root cause lies in uncertainties in real-world edge CDN
systems, including: (i) Traffic demand dynamics: The traffic demand level can vary widely across
billing cycles; (ii) SLA-constrained scheduling bias: The subsequent flow scheduling method may
actively violate the preceding decision of bandwidth planning to meet SLA requirements; and
(iii) Systemic scheduling deviations: The scheduled traffic amount may surge and differ from the
expected due to the scheduling delay from the time a scheduling decision is made to the time it is
executed [28, 48]. Consequently, these uncertainties cause traffic demand estimates to be inaccurate
and actual node utilization to be far from expected. Nevertheless, lightweight edge CDN nodes are
more vulnerable to the traffic fluctuations induced by uncertainty, and the massive number of edge
nodes further amplifies the impact of these fluctuations. While such uncertainty has a substantial
impact on merely 0.1% of time slots, it results in considerable cost-saving gaps between the optimal,
expected, and actual performance of the scheduling method (§2.3).
To address the impact of uncertainties above, our main idea is to proactively reduce future un-

certainties and reactively adapt to existing uncertainties. Specifically, we can manage to reduce
uncertainty (i) and (ii), and strategically adapt to uncertainty (iii). However, the practical imple-
mentation of this straightforward idea poses additional challenges. Firstly, to track traffic demand
dynamics, bandwidth plans must be re-optimized frequently, but this is impractical due to the high
computational hardness of Mixed Integer Linear Programming (MILP) with 𝑂 (107) parameters.
Secondly, preceding efforts to reserve a fixed proportion of bandwidth buffers cannot efficiently
reduce the SLA-constrained scheduling bias, because the buffers are insufficient in urgent 0.1%
time slots, but wasteful in most cases. Thirdly, to adapt to the inevitable systemic scheduling
deviation, free slots of nodes can be prematurely exhausted, which limits the future selection space
of augmented nodes for mitigating additional bandwidth cost.

This paper presents Oceanus, a cost-effective scheduling system for practical edge CDNs. Oceanus
decouples and simplifies the bandwidth planning problem, thereby performing it on multiple

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:3

Scheduling Mapping
A.cdn.com @ Region1 {Nd1, Nd3, ...}
B.cdn.com @ Region2 {Nd2, Nd3, ...}

Traffic Scheduler

Scheduling Center CDN Nodes

Edge
(L1)

L2

L3

Clients
Region 1

Control Plane Data Plane

CDN DNS Severs

Monitoring Data

A: IPs of Nd1,3,...

 Q: IP of domainA.com?
1

2

3

Region 2 Region N

33

Fig. 2. The architecture and workflow of edge CDN systems.

timescales to track the dynamic (i) at a finer granularity. In addition, Oceanus coordinates band-
width planning with flow scheduling based on a bidirectional feedback scheme (i.e., the planner’s
suggestion and the scheduler’s report) to mitigate the uncertainty (ii). In addition, Oceanus heuris-
tically augments nodes with minimal marginal cost in future to reduce the additional bandwidth
cost under the uncertainty (iii).

Oceanus has been deployed in one of the leading large-scale edge CDN systems, serving traffic
demands at the Tbps scale from thousands of edge nodes. The trace-driven evaluations show that
compared to the state-of-the-art method (i.e., Cascara [45]), Oceanus achieves 79.4% (vs. 51.5%) of
optimum cost reduction and saves 21.4% bandwidth costs (vs. 8.1%) while maintaining performance
SLAs. In real-world evaluations, Oceanus updates scheduling mappings 40.3% faster and ensures
80.3% higher scheduling mapping stability compared to baselines. These results confirm that
Oceanus effectively addresses the impact of the three types of uncertainties identified.

In summary, our contributions are as follows:
• We have identified three types of uncertainty in edge CDN systems that prevent existing solutions
from achieving the expected cost savings (§2).
• We have designed and implemented Oceanus, a cost-effective traffic scheduling system for
large-scale edge CDNs (§3-§5).
• Wehave verified that Oceanus is effective in achieving significant cost savings under uncertainties,
both in trace-driven testbeds and in real-world deployments (§6).

2 Background and Motivation
2.1 Edge CDN Systems
Edge CDN system architecture. CDNs aim to provide low-latency content access services for
client users by pre-caching frequently requested content from the original server, thereby shortening
the end-to-end transmission distance. As shown in Fig. 2, a CDN system contains three components:
(i) a centralized scheduling center, (ii) Domain Name System (DNS) servers, and (iii) distributed
CDN nodes. At the control plane, the scheduling center determines scheduling mappings that
assign user requests to specific CDN nodes, in order to reduce latency and bandwidth costs. These
mapping strategies are subsequently performed by DNS servers. At the data plane, geo-distributed
CDN nodes form a hierarchical caching architecture (i.e., L1, L2, and L3 layers) to serve client
requests efficiently. All client requests are first processed on L1 nodes, alternatively referred to
as edge nodes or points of presence (PoPs). If the target content is cached on the L1 node, the
node will respond directly to the client. Otherwise, the L1 node will sequentially fetch the content
backward from L2 nodes, L3 nodes, or even original servers.

Unlike traditional CDNs, edge CDNs deploy L1 nodes at much higher densities (e.g., more than
135 per 106𝑚𝑖2 [55]) in locations much closer to clients (i.e., in every city) to further improve
performance. The trade-off is that these closer L1 nodes typically possess reduced computing,

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:4 Chuanqing Lin et al.

storage, and bandwidth resources. Their bandwidth can be limited to tens of Gbps, which is 1-2
orders of magnitude less than traditional CDN nodes. These nodes also exhibit high heterogeneity
in terms of hardware resources. In summary, L1 nodes in edge CDNs are more susceptible to traffic
fluctuations and face greater challenges in fulfilling SLAs of various applications.
Request scheduling workflow. Client users find the edge CDN node to request through the

DNS system. As shown in Fig. 2, when a client desires content from a specific domain name, it first
issues a query to its local DNS (LDNS) resolver requesting IP addresses of the domain name. The
LDNS forwards the query to DNS servers (1○). CDN’s DNS servers respond with IP addresses of
all available nodes by searching the scheduling mapping (2○). The client will request the content
using one of the IP addresses replied by LDNS (3○).
Scheduling mapping. The scheduling mapping is controlled by the scheduling center and

represents the DNS servers’ strategy. Each entry of the scheduling mapping specifies the assigned
node for a flow, a group of content requests that forms the finest scheduling unit. During each time
slot, the scheduling center adjusts the scheduling mapping based on real-time network performance
and traffic demand data. In this way, the CDN system can control the nodes to which traffic demands
are directed, as well as the bandwidth utilization of each node.

2.2 CDN Scheduling Problem
By performing the scheduling mapping, the scheduling system aims to achieve two goals: (i) Primary
goal: guaranteeing that all flows’ transmission performance (e.g., RTT) meets the corresponding
SLAs; (ii) Secondary goal: minimizing the overall bandwidth costs of CDN nodes.
The challenge in achieving these two goals simultaneously is that each has a huge individual

solution space. Specifically, the expected bandwidth cost is calculated at the beginning of a billing
cycle (typically a month or 30 days), considering all edge CDN nodes (2,000+) in all time slots
(typically 5 minutes; 30 × 24 × 60/5 = 8640 slots for a 30-day billing cycle). On the other hand, SLA
assurance considers all flows (10,000+) in each time slot. Therefore, it is infeasible to solve this
multi-objective optimization problem at the minute level.
General workflow. Most previous studies separate the two goals into independent decision

logic and on different time scales [7, 14, 45, 52, 58]. The common practice is: (i) Bandwidth planning:
Minimize bandwidth costs by setting bandwidth budgets for edge CDN nodes based on estimated
traffic demand. (ii) Flow scheduling: Meet SLA requirements for real-time traffic demands by
providing adequate bandwidth from CDN nodes in each fine-grained time slot. Note that step (ii)
makes a "best effort" to limit the bandwidth usage within the budgets from step (i), but may still
result in a cost increase from expected due to unpredictable traffic demand dynamics and systemic
deviation [7, 14, 48].

CDN bandwidth costs. CDN vendors need to pay for the bandwidth utilization of their nodes,
which are typically built by or connected to other ISPs. The bandwidth cost of a node in a billing
cycle is given by 𝑐𝑜𝑠𝑡 = 𝑓 (max{𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡 }), where 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 are the billable bandwidth of inbound
traffic (from clients to nodes) and outbound traffic (from nodes to clients), and the billing function
𝑓 subsequently computes the final cost. Billing functions include linear functions, multi-tier linear
functions, regional or time-varying billing functions, and fixed costs (where charges remain constant
regardless of utilization) [64]. In this work, we consider the widely adopted linear billing function.
Since outbound traffic dominates the content delivery scenario [45, 52], the cost can be further
simplified to 𝑝 · 𝑏𝑜𝑢𝑡 , where 𝑝 is the bandwidth unit price (e.g., in $/Mbps) of a node.
Widely utilized methodologies for calculating the billable traffic 𝑏𝑜𝑢𝑡 are: (i) percentile-volume

billing and (ii) average-volume billing. Given node bandwidth utilization samples recorded for
each time slot within a billing cycle, percentile-volume billing uses the specific percentile of all
samples as the node’s billable bandwidth. In contrast, average-volume billing employs the mean

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:5

0% 10% 20% 30% 40% 50%
bandwidth cost saving

Entact

Cascara

optimal
expected
actual

Fig. 3. The bandwidth cost
saving achieved.

70% 80% 90% 100%
norm. median traffic

0%
20%
40%
60%
80%

100%

CD
F

m1
m2
m3

Fig. 4. CDF of daily traf-
fic over three months.

4.7% 3.4% 2.1% 0.9%-0.4%
estimate error

0%

10%

20%

30%

40%

co
st

 sa
vi

ng optimal

agressive

Fig. 5. Impact of esti-
mate error.

0.0 0.2 0.4 0.6 0.8 1.0
norm. utilization

94.9%

94.95%

95%

95.05%

95.1%

CD
F

3
1 2

over cost
(0.72-0.10=0.62)

actual
expected

 w/o passive
 deviation

Fig. 6. Utilization discrepan-
cies make additional costs.

bandwidth utilization volume, which is similar to total-volume billing. Another linear billing
method, maximum-volume billing, billed by the maximum utilization sample, is also considered in
some cases. In this paper, we focus on 95th percentile billing, which has emerged as the predominant
approach in production environments and has been proven to be NP-hard to optimize [7, 45, 52].
It is worth noting that practical edge CDN systems consist of nodes with mixed billing schemes.
Please refer to discussion §7 for the integrated approach.
Optimization logic. The opportunity to reduce the cost of 95th percentile billable bandwidth

lies in the 5% free time slots [14, 45]. Each CDN node should minimize its 95th percentile bandwidth
utilization sample, and increase the 95th to 100th percentile uncharged bandwidth utilization
(referred to as augmentation). This cost optimization problem can be formulated as a Mixed Integer
Linear Programming (MILP) [7, 45, 64]. In the actual solution process, previous works estimate the
traffic demand to determine the billable bandwidth for each node in a billing cycle [7, 14, 45, 52].
After that, the scheduler heuristically performs real-time node augmentation to cover dynamic
traffic demands in specific time slots.

2.3 Motivation: Pitfall of Existing Solutions
Although bandwidth cost optimization under 95th percentile billing is not a new topic, our analysis
based on a large-scale dataset from a leading CDN system shows that: Even the most advanced solu-
tions struggle to reduce bandwidth costs effectively while meeting SLA requirements due to overlooking
uncertainties in the practical scheduling system.
Dataset description. The dataset contains traffic demand data from a large edge CDN system

over three months. This system includes more than 2300 nodes serving Tbps-level traffic demands
from 30 regions (i.e., provinces). We further built a testbed system (details in §6.1) to replay the
collected data and conduct controlled experiments.

Baseline. We consider two scheduling methods: (i) Entact [62], which schedules by simplifying
the 95-percentile (non-linear) billing model to a linear one, and (ii) Cascara [45], which heuristically
augments nodes under performance constraints, representing the state-of-the-art solution. We
also compute the Optimal cost savings as a theoretical upper bound by performing an offline
optimization with full knowledge of the traffic demand in each time slot in the entire billing cycle.
Fig. 3 shows that huge performance gaps exist between the optimal cost derived from the

theoretical upper bound, the expected cost believed to be achievable by the scheduling method,
and the actual cost utilized to meet real-time traffic demands. Specifically, Entact only saves 15.2%
of bandwidth costs because its linear billing model assumption does not apply to 95th percentile
billing. While Cascara performs much better than Entact with 38.1% expected cost savings, it is still
inferior to the optimal with a relative gap of 11%. Even worse, the performance of Cascara further
deteriorates when actual traffic demand is considered, achieving only 21.6% actual cost savings.
The root causes of these gaps are revealed as follows.

Gap 1: From optimal to expected cost. This gap arises from the discrepancy in long-term
global traffic demand estimation due to its high dynamics. Here, long-term indicates the billing
cycle level (temporal) and global indicates the region level (spatial). Recalling §2.2, the scheduling

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:6 Chuanqing Lin et al.

method minimizes the expected cost based on the estimated traffic demand of the entire billing
cycle (month). Most existing solutions (including Cascara) assume that the traffic demand is stable
across months. Therefore, they simply use the actual traffic demand from the last month as an
estimate of the new month. However, our online measurements (Fig. 4) show that global traffic
demand is highly dynamic and can vary widely from month to month.
Traffic demand dynamics (uncertainty (i)) directly results in inaccurate estimates, leading to

sub-optimal expected costs. Take Cascara as an example, Fig. 5 illustrates the impact of the estimate
error on the expected cost savings, where the error is calculated as the value of the estimated minus
the actual value divided by the actual value. If the actual traffic demand is underestimated (where
the estimate error is lower than 0), the expected cost will be "aggressive" (low). In this case, the
scheduling method must augment more nodes to provide more bandwidth for additional traffic
demand. If the augmentation slots are prematurely exhausted, the total expected cost will increase
rapidly, thereby leaving a gap from the optimal cost.
Gap 2: From expected to actual cost. This gap is attributed to real-time local discrepancies

between the expected and actual bandwidth utilization. Such discrepancies occur at the time slot
and CDN node levels. Fig. 6 showcases how these discrepancies induce significant bandwidth
cost increases from the perspective of a single node, where the normalized node utilization is
the allocated outbound bandwidth divided by the node bandwidth capacity. The red line and the
blue line illustrate the actual and expected bandwidth utilization distribution, respectively. It is
noticeable that over-utilizing bandwidth on a node in just 0.1% of all time slots (from 94.9% to 95%,
corresponding to about 45 minutes in a month) can result in a substantial rise in actual bandwidth
cost (from 0.10 to 0.72). This sharp increase is highlighted at utilization points 1 and 3 in Fig. 6.
Further, these real-time local discrepancies come from two parts of uncertainty. One is SLA-

constrained scheduling bias (uncertainty (ii)). As illustrated in §2.2, since the scheduling system takes
performance assurance as its primary goal, it may actively increase bandwidth utilization of high-
quality nodes to meet SLA constraints, which is difficult to anticipate by the bandwidth planning.
The other is systemic scheduling deviation (uncertainty (iii)). The actual bandwidth utilization may
exceed expectations in the occurrence of unpredictable traffic surges on a node, or due to the
scheduling delay from the scheduling decision to its execution [28, 48].

To verify the ratio of impact of systemic scheduling deviation on real-time local discrepancies, we
allow the scheduling method to allocate traffic accurately as expected. The utilization line is plotted
as the green line in Fig. 6. As highlighted at point 2, the actual bandwidth cost is significantly
reduced to 0.26. However, the actual cost remains 2.6 times higher than expected, attributed to the
SLA-constrained scheduling bias.

Summary. Our analyses show that existing solutions still suffer from both long-term global and
real-time local discrepancies due to three types of uncertainties ((i) to (iii)) in practical scheduling
systems, resulting in significantly increased bandwidth costs under the 95th percentile billing model.
Understanding the root causes of these discrepancies provides opportunities either to proactively
reduce future uncertainties or to reactively mitigate the impact of existing uncertainties.

2.4 Design Challenges
Designing an applicable system in practice to tackle uncertainties is still challenging.
Challenge 1: How to reconcile long-term planning with real-time adjustment? Effective cost

optimization under percentile billing necessitates frequent strategy updates to adapt to global traffic
dynamics across a month-long cycle. However, the underlying optimization is NP-hard [7, 14],
making a full, frequent re-computation across thousands of nodes computationally infeasible.
Simultaneously, the system must react to traffic surges and SLA violations at the minute level.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:7

Real-Time Adjustment

Flow Scheduler

Flow Management

ReportSuggestionBandwidth Budgets

Global Augmentation
decision adjustment

Node Augmentation
Selection

Flow Assigner
Flow AllocatorFlow Checker

Augmentation Bandwidth Quota Reservation

Daily Traffic Demand Estimation

Target Billable Bandwidth Recomputation

Daily Optimizer

Target Billable Bandwidth

1

2
Mapping

3

Fig. 7. Oceanus’ system design. In each 5-minute cycle, the planner in green provides (1) real-time budgets to
the scheduler in red, which (2) updates the scheduling mapping and (3) reports back on budget adherence.

Solution: Oceanus decouples the bandwidth planning problem and executes it across multiple
timescales. The system updates the long-term planning strategy daily by solving a computationally
lighter linear program (LP), which significantly reduces complexity compared to full re-optimization.
The node augmentation decision is offloaded to the real-time adjustment that handles traffic surges.

Challenge 2: How to coordinate separated components under performance constraints? The band-
width planner (which sets bandwidth budgets) and the flow scheduler (which assigns traffic to meet
performance SLAs) are logically separated, leading to the SLA-constrained scheduling bias. Jointly
optimizing bandwidth cost and performance results in unaffordable computational complexity.
Prior efforts to reserve a fixed proportion of bandwidth buffers [7, 14] are inefficient: these buffers
are insufficient during urgent traffic spikes in 0.1% slots but are wasteful in most other time slots.

Solution: Oceanus implements a bidirectional feedback scheme that creates a tight, closed-loop
control system. Specifically, in addition to the bandwidth budget, the bandwidth planner provides
suggestions on where to move traffic from over-utilized regions. The flow scheduler reports back to
the planner on any regional resource shortages it encountered.

Challenge 3: How to mitigate the impact of node utilization discrepancies with limited resources?
Systemic scheduling deviations are inevitable. The naive solution is to use the limited augmentation
slots to absorb these deviations. However, these limited resources can be quickly and inefficiently
depleted, leaving the system vulnerable to future traffic peaks and forcing it to incur high costs.

Solution: Oceanus heuristically augments nodes with minimal marginal cost, ensuring that the
most "expensive" free slots are saved for when they are truly needed. This strategy balances the
consumption speed of free slots across nodes and reduces additional bandwidth costs when all free
slots are eventually exhausted.

3 Oceanus Design Overview
Oceanus is designed to minimize bandwidth costs by traffic scheduling in the face of uncertainties
in practical systems while promising that performance SLAs are met. As shown in Fig. 7, Oceanus
contains two main components: the Bandwidth Planner, responsible for updating bandwidth budgets
for nodes (§4), and the Flow Scheduler, responsible for updating scheduling mappings for traffic
flows (§5) based on the latest bandwidth budgets.
The bandwidth planner operates two key metrics for each node: the target billable bandwidth,

and the real-time bandwidth budgets. The former represents the target value of bandwidth at which
a node is expected to be billed ultimately. The latter refers to the bandwidth a node is allowed to
utilize at each time slot, which may exceed the former value during augmentation slots.

The bandwidth planner runs onmultiple timescales. At the beginning of a billing cycle, Oceanus
first solves an offline MILP problem to initialize the target billable bandwidth for each node (§4.1). At
the beginning of each day, Oceanus employs a daily optimizer to refine the target billable bandwidth
according to the estimated traffic demands on the current day (§4.2). For each 5-minute time slot,
with the latest traffic demands data, Oceanus augments nodes to allocate additional bandwidth

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:8 Chuanqing Lin et al.

if the total traffic demands exceed the total billable bandwidth (§4.3). The bandwidth budgets for
nodes are determined by combining the target billable bandwidth and the augmentation decisions.

Upon receiving the latest bandwidth budgets and traffic demands, the flow scheduler updates the
scheduling mapping every 5 minutes, which specifies the nodes assigned to flows. To achieve this,
Oceanus first dynamically manages the rate of each flow, which serves as the fundamental unit
of scheduling (i.e., an entry in the scheduling mapping). Simultaneously, the flow checker and the
flow allocator iteratively mark and reassign flows to satisfy all SLA requirements while minimizing
node bandwidth budget violations.

The bandwidth planner coordinates with the flow scheduler through the bidirectional feedback
scheme to eliminate SLA-constrained scheduling bias quickly. Specifically, the flow scheduler
reports node overuse and underuse situation to the real-time bandwidth planning module, which
globally adjusts the node augmentation decisions accordingly. In turn, the real-time bandwidth
planning module provides scheduling suggestions to the flow scheduler for assigning flows from
overused nodes to underused nodes.

4 Cost-Driven Bandwidth Planning
The bandwidth planner in Oceanus estimates the billable bandwidth for each CDN node and
computes the real-time bandwidth budgets for flow scheduling, which suggests the (ideal) upper
bound for resource utilization. Oceanus’s bandwidth planner operates in multiple timescales.
Specifically, based on the target billable bandwidth estimated at the beginning of the billing cycle,
i.e., every month (§4.1), Oceanus globally updates target billable bandwidth every day (§4.2), and
computes the real-time bandwidth budgets every 5 minutes (§4.3).

4.1 Target Billable Bandwidth Initialization
At the beginning of a billing cycle, Oceanus initializes aminimum total bandwidth cost by optimizing
the target billable bandwidth for each edge CDN node while meeting performance requirements.
We formulate this bandwidth cost minimization problem as an optimization problem. We introduce
the optimization goal and constraints here, and the detailed formulation is shown in Appendix A.
Decision variable. Let 𝑁 be the set of all nodes in a 95th-percentile-billed edge CDN system.

Oceanus determines the initial target billable bandwidth 𝐿𝑛 for each node 𝑛 ∈ 𝑁 . 𝐿𝑛 represents the
total billable bandwidth from a node to clients in a billing cycle.
Optimization goal. Oceanus aims to minimize the total bandwidth costs (

∑
𝑛∈𝑁 𝑝𝑛 · 𝐿𝑛) by

reducing the initial target billable bandwidth 𝐿𝑛 for each node. Here, 𝑝𝑛 is the bandwidth unit price
for node 𝑛 ∈ 𝑁 .
Constraints and definitions. Oceanus considers the following aspects of constraints in the

optimization problem:
• (i) Link Capacity: The bandwidth budget 𝐵𝑡𝑛 (including augmented bandwidth) of each node in
each time slot is limited by its bandwidth capacity 𝐶𝑛 , where 𝑡 ∈ 𝑇 is a 5-minute time slot in a
billing cycle.
• (ii) Augmentation Decision: The augmentation time slots, during which the bandwidth budget 𝐵𝑡𝑛
can exceed the target billable bandwidth 𝐿𝑛 , should account for no more than 5% of all time slots
(i.e., |𝑇 |/20).
• (iii) Traffic Supply and Demand: Edge CDN nodes provide bandwidth to meet the traffic demands
of clients across geographic regions (e.g., provinces). The set of all regions is denoted as 𝑅. In
time slot 𝑡 ∈ 𝑇 , let 𝐷𝑡

𝑖 denote the traffic demand of the client region 𝑖 ∈ 𝑅, and 𝑋 𝑡
𝑖 𝑗 denote the

allocated bandwidth from CDN node in region 𝑗 to clients in region 𝑖 (𝑖 can be the same as 𝑗). It
is clear that 𝑋 𝑡

𝑖 𝑗 should balance bandwidth supply 𝐵𝑡𝑛 and traffic demand 𝐷𝑡
𝑗 .

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:9

• (iv) Performance Assurance: Oceanus is designed to meet clients’ performance requirements (i.e.,
SLAs) in bandwidth cost optimization by considering only nodes from candidate region pools
(CRPs). A CRP of client region 𝑖 ∈ 𝑅 is defined as a set of node regions where RTT to region 𝑖

does not violate the SLA, namely 𝐶𝑅𝑃𝑖 = { 𝑗 ∈ 𝑅 |𝑅𝑇𝑇𝑖 𝑗 ≤ 𝑆𝐿𝐴𝑖 }. 1 Here, 𝑅𝑇𝑇𝑖 𝑗 indicates the RTT
between node region 𝑗 and client region 𝑖; 𝐶𝑅𝑃𝑖 ⊆ 𝑅.
Solution. This problem is a Mixed Integer Linear Program (MILP), which is computationally hard

(NP-hard) to solve[7, 14, 45, 58, 64]. Fortunately, this problem can be computed offline in advance
(e.g., on the last day of a previous billing cycle) and is not time-sensitive. Common optimization
solvers, such as GUROBI[15] and CPLEX[10], can first compute the relaxed Linear Programming
(LP) version of the problem to find the lower bound (the minimum cost), and then manage to reduce
the gap between the feasible solutions and the lower bound. We used GUROBI 11 on a 16-core, 64GB
RAM machine, setting the optimality gap to 5% and the time limit to 5 hours. Prior works [45, 52]
also provided other ideas to speed up the solving process.

Practice. At the beginning of a new billing cycle, the traffic demand 𝐷𝑡
𝑖 is unknown. Therefore,

Oceanus uses the actual traffic demand in the last billing cycle as an estimate2, as done in previous
work [7, 14, 45, 58]. However, as illustrated in §3, the optimizing performance will be severely
degraded if this estimate is inaccurate. To solve this issue, Oceanus introduces the following fine-
grained operations, i.e., daily billable bandwidth update (§4.2) and real-time bandwidth budget
generation (§4.3).

4.2 Daily Billable Bandwidth Update
The daily update aims to adjust target billable bandwidth frequently to accommodate the long-term
dynamics of traffic demands. Through proactively increasing the billable bandwidth, the rate of
augmentation bandwidth consumption can be reduced, preventing early depletion. To achieve this,
Oceanus first estimates the current day’s traffic demands based on the actual traffic demands of
previous days. Oceanus also calculates the augmentation bandwidth quota that can be utilized
today. Then, the portion of traffic demands that can be served by augmented bandwidth is separated
from the overall traffic demands. Finally, target billable bandwidths are recomputed using linear
programming to cover the remaining traffic demands from a global perspective. The multi-step
algorithm is outlined in Alg. 1 in Appendix §A.

Daily traffic demand estimation. To provide sufficient resources, Oceanus needs to estimate
today’s traffic demands. As traffic demands exhibit strong daily and weekly seasonality, the predictor
employs two distinct daily traffic demand models for each region to track different patterns on
weekdays and weekends. At the start of each day 𝑑 , the corresponding traffic demands estimation
series 𝐷̂𝑖,𝑑 for region 𝑖 ∈ 𝑅 is updated using the previous day’s actual regional traffic demand series
𝐷𝑖,𝑑−1 through seasonal exponentially weighted moving averages (EWMA) with a one-day lag:

𝐷̂𝑛𝑒𝑤
𝑖,𝑑
← 𝛼 · 𝐷𝑖,𝑑−1 + (1 − 𝛼) · 𝐷̂𝑜𝑙𝑑

𝑖,𝑑
(1)

where we set 𝛼 = 0.5 to balance the ability to track traffic trends and filter out irregular surges.
This method is simple yet robust and effective, as shown in §6.2.

Augmentation bandwidth quota reservation. Given estimated traffic demands, Oceanus
needs to determine how much demand should be served by node augmentation today. Therefore,
Oceanus begins with (i) calculating the remaining bandwidth quota for augmentation (𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑎)

1Here we take latency as the SLA requirement. Other performance requirements, such as throughput and loss rate, can also
be incorporated into this definition. For example, to ensure the throughput to region 𝑖 is at least𝑇ℎ𝑟𝑒𝑠ℎ𝑖 , we can define
𝐶𝑅𝑃𝑖 = { 𝑗 ∈ 𝑅 |𝑇ℎ𝑟𝑝𝑡𝑖 𝑗 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑖 }.
2Oceanus estimates 𝐷𝑡

𝑖
at the region level rather than at the flow level, because the traffic demand of a specific flow varies

drastically due to human factors and is therefore difficult to predict.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:10 Chuanqing Lin et al.

for today, based on historical bandwidth consumption in this billing cycle. Specifically, Oceanus
identifies historical time slots where the bandwidth budget 𝐵𝑡𝑛 exceeded the latest target bill-
able bandwidth 𝐿′𝑛 as utilized augmentation slots (line 4). Then Oceanus divides the remaining
augmentation slots evenly over the remaining days (lines 5-7).

00 02 04 06 08 10 12 14 16 18 20 22 00
hour / h

tra
ffi

c
de

m
an

ds

covered by DailyQuota

NormalTrafi
q× 24h

D̂i

NormalTrafi

Fig. 8. An example of augmentation
bandwidth quota reservation.

After that, Oceanus (ii) allocates the augmentation band-
width quota 𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑎 to the estimated traffic demand
𝐷̂𝑖 , to calculate the traffic covered by the billed bandwidth
(𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖). In detail, as shown in Fig. 8, Oceanus per-
forms a binary search to identify the minimum percentile 𝑞
and corresponding 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 at each region 𝑖 , ensuring
that the sum of traffic demands exceeding𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 (green
portion) does not exceed the augmentation bandwidth quota
𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑎 (lines 8-9).
Target billable bandwidth recomputation. Based on the billed bandwidth 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 ,

Oceanus can update the target billable bandwidth 𝐿𝑛 . As illustrated in Eqs. 12-16, the optimization
process is similar to the one in §4.1, where traffic demands 𝐷𝑡

𝑖 are substituted with 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 .
To reduce the computational complexity, Oceanus avoids selecting specific CDN nodes for augmen-
tation at this stage and leaves this decision to the subsequent real-time process (§4.3). As a result,
the daily billable bandwidth update is formulated as an LP problem and can be solved in seconds.
In the case of a significant traffic surge or the integration of newly constructed nodes in the middle
of a billing cycle, Oceanus also prioritizes the urgent global re-run of this LP problem.

4.3 Real-time Node Augmentation
When the real-time traffic demands exceed the total billable bandwidth, Oceanus must allocate
additional bandwidth via node augmentation. The node augmentation decision should satisfy three
requirements: (i) the consumption of augmentation slots across nodes should be balanced; (ii) the
additional bandwidth cost can be minimized even when all nodes’ remaining augmentation slots
are exhausted; (iii) the augmentation selection process should account for performance assurance,
i.e., prioritizing bandwidth allocation in regions facing resource shortages.

Oceanus maintains a priority queue to order nodes according to their utilization history. Oceanus
first augments nodes with the highest priority to provide sufficient bandwidth to cover traffic
demands. Next, the augmentation decision is adjusted globally based on the bandwidth utilization
report provided by the flow scheduler. Oceanus also generates scheduling suggestions to guide the
scheduler in rescheduling flows from nodes at resource-scarce regions to nodes at resource-rich
regions. Finally, the bandwidth budgets, which denote the amount of bandwidth available for nodes,
are output to the flow scheduler. The node augmentation algorithm is summarized at Alg. 2 in
Appendix §A.

Node augmentation. At each time slot, Oceanus first checks whether node augmentation is
necessary. When the total billable bandwidth (i.e.,𝐺𝑖𝑣𝑒𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠) cannot cover all traffic demands
(line 1-5), it starts to augment several nodes to allocate additional bandwidth. Oceanus maintains
the node priority queue using two metrics: the marginal cost (𝑀𝐶𝑛) and the augmented slots (line
6-7). The augmented slots refer to the number of historical time slots where the actual utilization𝑈 𝑡

𝑛

exceeded the target billable bandwidth 𝐿𝑛 . The marginal cost represents the additional bandwidth
cost incurred for augmenting a node by one more time slot:

𝑀𝐶𝑛 = 𝑝𝑛 ·
(
𝑃95 ({· · · ,𝑈 𝑡−1

𝑛 ,𝐶𝑡
𝑛, 𝐿

𝑡+1
𝑛 , · · · }) − 𝑃95 ({· · · ,𝑈 𝑡−1

𝑛 , 𝐿𝑡𝑛, 𝐿
𝑡+1
𝑛 , · · · })

)
(2)

where 𝑝𝑛 denotes the unit price of node 𝑛, 𝑃95 (· · ·) computes the 95-percentile value for a sequence.
In the utilization sequence,𝑈𝑛 represents the historical utilization samples from time slot 1 to 𝑡 − 1,
and the future utilization samples from time slot 𝑡 + 1 to the end of the billing cycle are estimated

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:11

by the billable bandwidth 𝐿𝑛 . At the current time slot 𝑡 , the former sequence assumes the node is
augmented with utilization to its capacity 𝐶𝑛 , while the latter sequence assumes the node is not
augmented with utilization equal to the target billable bandwidth 𝐿𝑛 .

Oceanus prioritizes augmenting nodes with the smallest marginal cost and the least augmented
slots (line 11). Early in the billing cycle, when nodes still have available augmentation slots, the
marginal costs are equal to 0. Oceanus can sequentially augment the node with the least augmented
slots. After all free augmentation slots are exhausted, Oceanus can supply sufficient bandwidth
with minimal additional bandwidth cost.

Global augmentation decision adjustment. Despite sufficient bandwidth being supplied glob-
ally, local resource shortages can still occur. This is because the flow scheduler adjusts scheduling
mappings locally and fails to find available bandwidth resources for traffic demands from region 𝑖

from nodes located at regions in 𝐶𝑅𝑃𝑖 . As a result, the flow scheduler is forced to allocate traffic
demands exceeding the bandwidth budget on certain nodes to ensure performance SLAs. To reduce
the violation of bandwidth budgets, Oceanus adopts the feedback mechanism to address the local
resource shortage promptly. The report 𝐹𝑖 reports the bandwidth misalignment between the actual
serving bandwidth and the bandwidth budgets for nodes in region 𝑖 . For example, a positive 𝐹𝑖
indicates a bandwidth shortage in region 𝑖 (i.e., certain nodes are over-utilized), whereas a negative
𝐹𝑖 indicates a bandwidth surplus.

Oceanus adjusts the augmentation decisions in two steps: (i) augmenting more nodes at regions
within 𝐶𝑅𝑃𝑖 for each bandwidth shortage region 𝑖 , until all bandwidth shortage is fulfilled (line
14-18); (ii) recycling augmentation bandwidth from regions with a bandwidth surplus (line 20-23).
Specifically, Oceanus can stop augmenting a node 𝑛 in region 𝑖 , if there exists a region 𝑗 in 𝐶𝑅𝑃𝑖
that has sufficient bandwidth surplus to accommodate the additional traffic demands from region 𝑖
after stopping augmenting node 𝑛. This excessive deployment and conservative recycling strategy
can effectively avoid node augmentation oscillation.

Oceanus also generates the suggestion 𝐻 𝑡 for the next round of flow mapping. For example, 𝐻 𝑡
𝑖 𝑗

represents the suggested amount of traffic demands to be rescheduled from region 𝑖 to region 𝑗 , as
either region 𝑖 experiences a bandwidth shortage or its augmentation bandwidth is recycled.
Final output. The real-time node bandwidth budgets are finally computed. Specifically, if the

node is selected for augmentation, the bandwidth budget is set to its capacity. Otherwise, the
bandwidth budget is configured to its target billable bandwidth (line 25-28). Such bandwidth
budgets guide the flow scheduler (§5) to assign flows to nodes.

5 Performance-Oriented Flow Scheduling
Given the bandwidth budgets generated by the bandwidth planner, the flow scheduler determines
scheduling strategies for all flows, the basic units of traffic demand. As shown in Fig. 7, within each
5-minute time slot, the flow manager first dynamically aggregates traffic demands into uniformly-
sized flows, to reduce the scale of the scheduling problem. The flow assigner then scans and adjusts
the scheduling mapping, thereby ensuring that all performance SLAs are considered as hard
constraints, while making the best effort to implement node bandwidth budgets as the optimizing
goal.

5.1 Flow Management
Oceanus aggregates traffic demands at the flow level rather than the finest granularity to reduce
storage and compute overhead [6, 19, 38, 61]. Specifically, a basic flow is defined by: (i) the requested
domain name, which indicates the application types and performance requirements, and (ii) the

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:12 Chuanqing Lin et al.

LDNS IP address, which identifies the source location. Requests inside a basic flow share similar
resource requirements (e.g., CPU, memory, bandwidth, and network performance).

Flows must be appropriately divided or aggregated to balance their traffic demand and quantity
for efficient scheduling. On one hand, scheduling flows at a finer granularity provides precise
control, which can ensure more traffic meets SLA and reduce node over-utilization events. However,
this creates an unmanageable online scheduling problem with millions of flows that is challenging
to execute within the required five-minute epoch. On the other hand, it is necessary to divide
the giant flow (e.g., those exceeding 100Gbps) to assign them across lightweight nodes of edge
CDNs. A giant, undivided flow can frequently exceed a single node’s capacity or bandwidth budget,
leading to repeated rescheduling. This frequent reassignment destabilizes node utilization and is
cache-unfriendly, ultimately degrading performance.

0 1 2 3 4 5 6
flow rate / Gbps

0%

20%

40%

60%

80%

100%

CD
F

w/ Flow Mgt
w/o Flow Mgt

Fig. 9. Distribution of flow rate.

To achieve this goal, the flow manager elastically controls the
granularity of flows. The number and rate of flows can be expanded
or contracted vertically or horizontally. As the traffic demand of
a flow increases or decreases, the flow rate will first expand or
contract vertically. When the traffic demand of a flow reaches the
limit of horizontal expansion or contraction, the flow is split or
aggregated with other flows. The limit for expansion and contrac-
tion is elastic to prevent frequent flow reconstruction. For instance,
when bandwidth demand exceeds 10 Gbps, the flow is subdivided
into two smaller flows. These flows are only aggregated when the
total bandwidth demand decreases below 8Gbps.
Fig. 9 illustrates the distribution of flow rate. Compared to scheduling at the finest granularity,

the flow manager reduces the scale of flows by 80% and balances their resource demands. The
coefficient of variation (CV) of flow rates drops from 2.10 to 0.67.

5.2 Flow Assignment
The flow assignment problem is typically a bin-packing problem, which is challenging to solve
due to the indivisibility of flows [7, 14, 58]. In edge CDN systems, the flow assigner must use a
lightweight algorithm to update the scheduling mapping in under 5 minutes, given the enormous
search space of over 10 million possible <flow, node> pairs.

To narrow the search space and accelerate updates, Oceanus adopts a local heuristic reassignment
approach, i.e., only reassigns necessary flows to address performance or bandwidth constraints.
Specifically, the flow assigner consists of two modules: the flow checker and the flow allocator. The
former repeatedly scans all nodes and flows to identify flows requiring reassignment. Guided by the
suggestion provided by the bandwidth planner, the latter iteratively reassigns marked flows to new
nodes and provides report back to the bandwidth planner, reporting real-time regional bandwidth
shortages or surpluses. The flow reassignment algorithm is summarized in Alg. 3 in Appendix §A.
Flow checker. The flow checker performs two types of checks on the current assignments. (i)

At the start of each time slot, it marks all flows whose real-time collected performance violates
the corresponding SLA (taking latency as an example in line 3). (ii) It continuously scans all
nodes to verify if bandwidth utilization exceeds the allocated bandwidth budget. If any node is
over-utilized, the checker marks the minimum number of flows on that node for reassignment
to reduce utilization below the budget (lines 7–10). To account for passive scheduling deviations,
Oceanus limits the bandwidth utilization of a node to 𝜂𝐵𝑡𝑛 , where 𝜂 is an annealing factor. This
factor gradually increases from 0.95 to 1 during each time slot.

Flow allocator. The flow allocator reassigns each marked flow 𝑠 through the following steps.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:13

• Candidate Node Pool Construction: The allocator identifies all available nodes in regions where
the corresponding network performance to the flow’s source region 𝑖 meets SLA, forming the
candidate node pool (i.e., 𝑁𝑜𝑑𝑒𝑃𝑜𝑜𝑙𝑠 = {𝑛 ∈ 𝑁 𝑗 | 𝑗 ∈ 𝐶𝑅𝑃𝑖 }) (line 14). Here, 𝐶𝑅𝑃𝑖 denotes the set
of node regions where performance to region 𝑖 meets SLA (§4.1).
• Normal Reassignment: The flow is assigned to the node in the pool with the largest remaining
bandwidth (i.e., 𝜂𝐵𝑡𝑛 −𝑈 𝑡

𝑛 , lines 15–17).
• Bandwidth Takeover : If no node has sufficient remaining bandwidth, the allocator allows the flow
to take over bandwidth from lower-priority flows, and reassigns these affected flows afterward
(lines 18–25). A low-priority flow is characterized by its relaxed SLA, which allows allocating
resources more easily from a wider candidate node pool. The order of regions to be taken over is
determined by the bandwidth planner’s suggestion (§4.3), prioritizing regions with the greatest
surplus bandwidth.
• Violation Handling: If the assignment cannot be completed without violating bandwidth budgets,
the allocator assigns the flow to the last resort node in the candidate node pool with the largest
remaining bandwidth (i.e., 𝐵𝑡𝑛 −𝑈 𝑡

𝑛) to minimize the violation (line 26). Nonetheless, the SLA
requirement for the flow is still satisfied.
Report computation. In practice, forced bandwidth budget violations do occur, though most

last less than 30 minutes and are self-rectifying. To balance bandwidth provision across regions and
promptly eliminate such violations, the allocator computes the bandwidth provision and utilization
for each region (line 29). This information is then used by the bandwidth planner to customize
augmented node selection (§4.3), optimizing the use of limited augmentation bandwidth.
Final output. The updated scheduling mapping reflects the latest strategy for assigning flows

to specific nodes. This mapping is incrementally distributed to all DNS servers for deployment.

6 Evaluation
We evaluate the performance of Oceanus in a large-scale edge CDN. First, we demonstrate that
Oceanus achieves significant bandwidth cost savings (§6.1). Next, we analyze how Oceanus handles
three types of uncertainties (§6.2). Finally, we evaluate the performance of the flow scheduler (§6.3).

6.1 Trace-Driven Evaluation on Bandwidth Cost Savings
Testbed setup. We set up a customized traffic scheduling simulation testbed to evaluate the
bandwidth cost of Oceanus. The testbed simulates operations of the real-world system by replaying
historical traffic demand and corresponding scheduling decisions. This allows us to precisely
examine the bandwidth costs for edge nodes and the SLA compliance for individual traffic flows,
based on the provided traffic demand and node state traces.

Specifically, the scheduler computes a bandwidth budget for each online node and determines the
scheduling mapping for each flow in each 5-minute epoch, utilizing the historical traffic demand
and performance data collected up to that time point. According to the generated mapping, the
testbed calculates the bandwidth utilization of each node (by summing the demands of all assigned
flows) and the performance of each flow. This resultant utilization and performance data is then
fed as input to the next scheduling epoch, effectively closing the simulation loop. The billing cycle
is set to 30 days, with node bandwidth utilization recorded every 5 minutes, resulting in a total of
8,640 time slots for each billing cycle. Please refer to Appendix C for more details.
Traces. The trace data was collected from a leading edge CDN vendor in China over a three-

month period (June–August 2024), incorporating a high-demand-volatility event: the Paris 2024
Olympics. This dataset captures over Tbps of traffic demand across 2,300 nodes located in 30 regions
(i.e., provinces). The real traffic transmission data was directly collected from edge nodes in the

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:14 Chuanqing Lin et al.

production environment, and subsequently aggregated at the 〈domain name, user region〉 level on a
5-minute timescale. After the flow management, over 10,000 flows are considered in each time slot,
representing over 95% of the total system’s traffic demand. These flows exhibit Gbps-level dynamic
traffic demands and have specific performance assurance priorities, limiting the candidate-assigned
nodes for scheduling. Appendix C provides the detailed trace collection method.
A real-time measurement system [5, 19] monitored network performance (using mean RTT as

the key metric) from any region and Autonomous System (AS) to our nodes. The three-month
measurement dataset is crucial for evaluating potential SLA violations resulting from any scheduling
decision. We also recorded the timestamps of all node failures and newly constructed node online
events. All nodes are billed by the 95th percentile bandwidth in this testbed.

Scenarios.We designed three scenarios to simulate increasing levels of uncertainty, each posing
progressively greater challenges for online cost reduction:
• Scenario 1: Only the bandwidth planning is performed, and the actual real-time traffic demand is
given to the scheduler. Node utilization is directly set to the node’s allocated bandwidth budget,
assuming that all bandwidth budgets can be accurately implemented. The primary uncertainty
considered is the long-term global dynamics of future traffic.
• Scenario 2: Schedulers are required to generate scheduling mappings based on the actual real-
time traffic demand. Node utilization is computed by summing the actual traffic demands of
all assigned flows. Schedulers may actively violate the bandwidth budgets of certain nodes to
guarantee SLAs. This scenario additionally introduces the SLA-constrained scheduling bias.
• Scenario 3: Schedulers make decisions based on the last round of observed traffic demand, while
the actual node utilization is recorded in real time according to gradually fluctuating traffic
demands. This scenario closely resembles real-world conditions, introducing the uncertainty of
systemic scheduling deviation.
Baselines. To evaluate the cost savings achieved by Oceanus, we implemented two baseline

methods in our testbed environment: Entact [62] and Cascara [45]. We also consider naive load
balancing algorithm, which sets a node’s bandwidth budget to the ratio between its capacity and
the total capacity multiplied by the total traffic demand. This method does not save bandwidth costs.
Since these methods cannot directly generate scheduling mappings in our testbed, we combined
them with a global flow scheduler to produce scheduling mappings at each time slot based on the
bandwidth budgets they output. The global flow scheduler, similar to [42, 56], reassigns all flows
during each time slot heuristically at order of their priority. Additionally, we solved the offline
optimization problem, assuming all traffic demands and uncertainties are known in advance, to
determine the optimal cost savings that can theoretically be achieved.

Metrics.We adopt two metrics to quantify bandwidth cost savings, as adopted in work [7]:
• Relative exploitation index (𝑅𝐸𝐼): This normalized metric measures how effectively a method
utilizes the cost-saving potential:

𝑅𝐸𝐼 =
𝐶𝑜𝑠𝑡𝐿𝐵 −𝐶𝑜𝑠𝑡𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
𝐶𝑜𝑠𝑡𝐿𝐵 −𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙

(3)

where𝐶𝑜𝑠𝑡𝐿𝐵 is the cost achieved by naive load balancing,𝐶𝑜𝑠𝑡𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 is the cost achieved by the
evaluated method, and 𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the theoretical optimal cost achievable with full knowledge.
A higher 𝑅𝐸𝐼 value close to 1 indicates minimal additional bandwidth cost loss.
• Percentile billing ratio (𝑃𝐵𝑅): This metric represents the percentage value of the billed bandwidth
relative to the total traffic demands:

𝑃𝐵𝑅 =
|{𝑇𝑟𝑎𝑓𝑡 |𝑇𝑟𝑎𝑓𝑡 ≤ 𝐵𝑊𝑏𝑖𝑙𝑙𝑒𝑑 }|

𝐼
(4)

where 𝑇𝑟𝑎𝑓𝑡 is the total traffic demands at time slot 𝑡 , 𝐵𝑊𝑏𝑖𝑙𝑙𝑒𝑑 is the total billed bandwidth, and
𝐼 is the number of time slots in a billing cycle (i.e., 8,640). For naive load balancing, 𝑃𝐵𝑅 is 95%,

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:15

0% 20% 40% 60% 80% 100%
REI

Oceanus

Cascara

Entact scenario
1 2 3

(a) REI of three methods.

0 20 40 60 80
PBR / %

Oceanus

Cascara

Entact

(b) PBR of three methods.

Fig. 10. Bandwidth cost savings achieved by Oceanus. In (b),
the dashed line indicates the optimal 𝑃𝐵𝑅 that can be achieved.
Higher REI and lower PBR indicate more successful cost saving.

0 10 20 30
days

0%
20%
40%
60%
80%

100%

ag
m

t b
w

w/ daily
w/o daily
Cascara

(a) Augmentation bw
consumption rate.

4.7% 3.4% 2.1% 0.9%-0.4%
estimate error

0%

10%

20%

30%

40%

co
st

 sa
vi

ng
s

agressive
Oceanus
Cascara

(b) Impact of estimate
error.

Fig. 11. Oceanus adapts to the traffic dynam-
ics by regulating the consumption rate of aug-
mentation bandwidth.

as the utilization curve of each node mirrors the overall traffic demand. A lower 𝑃𝐵𝑅 indicates
reduced overall billed bandwidth.
Overall Performance. As shown in Fig. 10, Oceanus achieves 79.4% of the total cost-saving

potential (REI), directly reducing bandwidth costs by 21%. Under 95th-percentile billing, Oceanus’s
billed bandwidth (PBR) reaches the 47th percentile of traffic demands. In contrast, Cascara achieves
only 51.5% of cost-saving potential with an 84.8th-percentile PBR, saving merely 8.1% in costs.
These results confirm that Oceanus effectively mitigates the impact of uncertainties.

Performance under different scenarios. As shown in Fig. 10a and 10b, Oceanus adapts to
increasing uncertainties across scenarios while limiting additional costs, achieving 93.3%, 91.2%, and
79.4% REI in Scenarios 1–3. Cascara performs well in pure bandwidth planning (86.1% REI, 40.9%
PBR in Scenario 1) but deteriorates under high uncertainties (51.5% REI, 84.8% PBR in Scenario 3).
Entact performs poorly throughout due to its simplified linear billing model.

6.2 Bandwidth Cost Reduction Deep Dive
In this part, controlled experiments are conducted to analyze how individual designs of Oceanus
can mitigate the impact of uncertainties on overall bandwidth costs.
Daily traffic demand estimate accuracy. The daily predictive model is primarily designed

to track dynamic traffic trends while effectively mitigating the influence of significant daily and
weekly seasonality and high-frequency noise. Various time series prediction models, such as EWMA
and Holt-Winters [16], can be employed to achieve this goal.

0 0.25 0.5 0.75 1
α

5%

10%

15%

20%

25%

M
AP

E

Holt-Winters

m1
m2

m3
overall

Fig. 12. EstimationMAPE for dif-
ferent predictive models and pa-
rameters.

As illustrated in Figure 12, we applied a seasonal EWMA with
varying 𝛼 settings to a three-month series of regional traffic de-
mand, evaluating the Mean Absolute Percentage Error (MAPE) for
each month and overall. Performance was also compared against
the Holt-Winters model (represented by the horizontal dotted
line in the corresponding color). The best-performing 𝛼 setting
is marked on each line. Setting 𝛼 to 0.5 achieves the lowest estimate
error (6.9%) over the entire period. However, we found no single
setting consistently outperformed others over every month, likely
due to the inherent unpredictability of long-term traffic dynamics
and sudden, real-time traffic spikes. Furthermore, the Holt-Winters
model achieved worse overall performance because it is required
to predict 24×60/5=288 steps in a row, under which prediction errors accumulate easily. More
sophisticated time series models, such as Prophet [47, 49], might overcome this limitation.

Daily target billable bandwidth update. Oceanus daily updates target billable bandwidth to
regulate augmentation consumption under long-term traffic demand dynamics (Fig. 11a). Careful
recomputation ensures even consumption of augmentation resources, depleting slots precisely
at month-end. Skipping daily updates risks overly aggressive target billable bandwidth, causing

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:16 Chuanqing Lin et al.

0% 25% 50%40%

60%

80%

100%

tim
e

slo
ts

 C
DF

w/ feedback
w/o feedback
 Cascara

(a) Over-utilized nodes
ratio.

5 10 15 >=20

3%

10%

30%

100% w/ feedback
w/o feedback
Cascara

(b) Over-utilization du-
ration.

Fig. 13. Oceanus limits occurrences and durations
of node over-utilization.

0% 50% 100%0%
20%
40%
60%
80%

100%

CD
F

Oceanus
Cascara

(a) CDF of nodes’ active
augmentation times.

0 10 20 3020%

40%

60%

80%

100%

RE
I

Oceanus
Cascara

(b) Cost-saving degrada-
tion within a month.

Fig. 14. Oceanus reduces the bandwidth costs in-
crease caused by node over-utilization.

50 100 150 200
0%

20%

40%

60%

80%

100%

CD
F

local
global

(a) Time expenditure (s).

0% 10% 20%
0%

20%

40%

60%

80%

100%

CD
F

local
global

(b) Mapping change ratio
Fig. 15. CDF of the time expenditure for update and
the change ratio of scheduling mappings.

local global
over-utilized nodes 4.0 5.7

RTT / ms 15.3 16.1
mapping change ratio 2.5% 11.5%
computation time / s 127.3 213.1

Table 1. Scheduling Performance.

premature depletion of augmentation slots. In contrast, Cascara struggles to adapt to the dynamics
due to its limited ability to preemptively adjust target billable bandwidth.

Oceanus’s in-cycle adjustability makes it insensitive to initial target billable bandwidth inaccura-
cies. As shown in Fig. 11b, Oceanus experiences less cost-saving degradation than Cascara under
initial traffic estimate errors (defined at §2.3). Another evidence is shown in Fig.14b, where after
detecting the initial estimate error, Oceanus adjusts the target billable bandwidth on the second
day of the month, preventing premature depletion of augmentation slots.

Coordinated traffic scheduling through feedback. Oceanus employs bidirectional feedback
to address real-time regional bandwidth provision imbalances. Fig. 13a shows the CDF of over-
utilized node ratios over the billing cycle. With feedback, Oceanus prevents over-utilization in
>95% of time slots (vs. 66% without feedback). Cascara’s SLA-constrained infeasible bandwidth
budgets cause widespread over-utilization during >50% of the billing cycle.

This improvement is also achieved by rapidly resolving over-utilization events. Fig. 13b illustrates
the ratio of over-utilization event persistent time in all over-utilization events within a billing
cycle, where the y-axis grows exponentially. Note that the fourth group of bars represents all cases
exceeding 20 minutes, which accounts for its potentially increased magnitude. Feedback resolves
89.4% of over-utilization events within 5 minutes, significantly reducing free slot over-consumption.

Minimal marginal cost based augmented node selection. Oceanus mitigates inevitable node
utilization discrepancies by consuming augmentation slots while reducing active augmentations
based on the severity of discrepancies. Fig. 14a illustrates the CDF of nodes’ active augmentation
times after the entire billing cycle. In response to node over-utilization, it dynamically adjusts
active augmentation frequency to balance consumption. Cascara continuously augments the same
nodes, leaving insufficient buffer slots to handle node utilization discrepancies effectively.
When free slots are exhausted, Oceanus prioritizes augmenting nodes with minimal marginal

cost (§4.3) to limit additional bandwidth cost (Fig. 14b). Conversely, Cascara’s imbalanced node
augmentation strategy wastes half its cost-reduction efforts.

6.3 Large-Scale Evaluation on Flow Scheduling
Real world deployment.Oceanus’s flow scheduler has been deployed in production and continues
to evolve. Prior to the deployment of Oceanus’s flow scheduler, a global flow scheduler introduced

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:17

in §6.1 was applied. We finally compare the performance of scheduling mappings generated by
Oceanus’s local flow scheduler and the global flow scheduler in our production system.
Performance. The key metrics, averaged over the entire billing cycle, are summarized in Tab.

1. Although Oceanus’s local scheduler adjusts the scheduling mapping in a localized manner, its
scheduling performance matches global search. It reduces actively over-utilized nodes from 5.7 to
4.0 and assigns requests to nodes with 0.8 ms lower average RTT, compared to the global scheduler.

Oceanus reduces changed mapping entries by 78.3% and updates 40.3% faster due to its local
adjustments. Conversely, the global scheduler unnecessarily reassigns all flows each time slot,
causing: (i) High computation time: at least 180 seconds (Fig. 15a). High computation time hinders
the system’s ability to react promptly to abrupt network failures. (ii) Scheduling mapping Instability:
adjusting more than 6% mappings per update (Fig. 15b). Frequent scheduling mapping changes
undermine cache hit rates of edge nodes, leading to additional bandwidth cost for L2 nodes and
higher request latency for users.

7 Discussion
Traffic demand prediction. For daily forecasting, Oceanus tracks long-term regional traffic
demand trends throughout the billing cycle to guide adjustments to the target billable bandwidth.
Consequently, the system does not require highly precise prediction of every irregular traffic
fluctuation, and the seasonal EWMA method achieves acceptable accuracy for this purpose (§6.3).
Predictable event-induced traffic bursts (e.g., sports live-streaming, new TV series releases, software
updates) can be captured in advance and accounted for by the monthly and daily traffic predictive
models. Conversely, unanticipated traffic surges (e.g., breaking news or sudden Content-Provider
(CP) initiated multihoming shifts [2, 29, 36]) may deplete free augmentation resources prematurely,
but the resulting deficits are factored into the following day’s daily plan. If necessary, an occasional
LP re-organization is also acceptable.

Nevertheless, more sophisticated time-series prediction methods, such as those utilizing machine
learning (ML) [23, 39, 49], can exploit additional cost-saving potentials in the online scenario. For
daily planning, traffic demand changing trends can be captured more rapidly, enabling precise
billable bandwidth adjustments. For real-time augmentation, accurate short-term traffic predictions
could effectively mitigate the impact of systemic deviation and optimize node augmentation
selection and stability. We leave more effective predictors for future work.
Generalization Although Oceanus is introduced under the 95th-percentile billing scheme for

CDN scheduling, it is more complicated in practice and can be generalized to broader contexts.
• Nodes with mixed billing schemes. The real-world system consists of nodes with diverse billing
schemes, as introduced in §2.2. Oceanus’s objective functions in monthly MILP (§4.1) and daily
LP (§4.2) can be generalized to other billing schemes and multiple billing cycle durations [64],
which does not introduce additional complexity, as alternative billing schemes are linear. The
computation of marginal cost during real-time node augmentation (§4.3) also supports various
billing schemes. The integration of nodes with diverse billing schemes provides two advantages
to the system: (i) the overall bandwidth costs can be further reduced; (ii) buffer is provided to
percentile-billed nodes when free slots are exhausted. In Appendix §B, we provide an example
analysis on how to further reduce cost by average-volume billed nodes.
• Complex flow scheduling constraints. Oceanus employs a heuristic flow scheduling approach (§5),
enabling the incorporation of customized constraints. For example, Oceanus can restrict flow
reassignment to a limited candidate node pool based on SLA assurance, service compatibility,
business logic, multi-tenant considerations, or other criteria.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:18 Chuanqing Lin et al.

• Broader traffic engineering (TE) context. Oceanus’s idea can also be applied to other contexts, such
as inter-datacenter scheduling [45, 52, 64], multi-CDN scheduling [29], to achieve cost reduction
as expected under widely existing uncertainties.
Feedback-based TE in the real world. Oceanus’s design provides a better trade-off for in-

terpretability, safety, and adaptability compared to ML-based methods. First, Oceanus’s decisions
are transparent and debuggable, a critical requirement for online operations, unlike the ’black
box’ nature of many ML models. Second, the bidirectional feedback loop forms a robust negative
feedback structure, which inherently promotes stability and quick convergence, supported by
Fig.13b. Conversely, ML systems typically provide no formal guarantees against SLA violations or
node over-utilization. Third, Oceanus can immediately adapt to changes in the network (e.g., newly
constructed nodes) by updating its model inputs, which remains a challenge for ML systems.

8 Related Work
Cost reduction. A lot of works employ traffic engineering to perform cost reduction in various
scenarios, such as multihoming [14], CDN multihoming [29], inter-datacenter transferring [25, 64],
cloud-edge scheduling [45, 52, 65], and CDN traffic assignment [7, 58]. While the linear billing
scheme has been well-explored in [3, 25, 34, 37, 62], most works [17, 26, 43] focus on the non-
linear percentile billing scheme, which has been proven to be NP-hard [14]. Among them, some
works [22, 27, 57] manage to shift loads to different time slots, which conflicts with the real-time
requirements of CDN services. To solve the online problem, Jetway [12] adopts a maximum flow
algorithm, TARDIS [9] uses the Shapley [46] value, Cascara [45] and EdgeCross [52] formalize an
MILP model and heuristically solve it, onTPC [7] and Iris [58] employ machine learning methods.
However, most of the works fall short of handling uncertainties in practical systems, and thus
cannot achieve the desired effect in the real world.
Traffic scheduling. To optimize transmission performance, cloud providers schedule traffic

either to specific nodes [8, 13, 38, 44, 56] or through specific paths [5, 6, 21, 41], based on the real-
time measurement data. The methods they adopt also vary. For example, Donar [53] and [20, 54, 63]
propose distributed algorithms, Akamai’s work[31, 38] adopts the stable marriage algorithm, and
Espresso[56] simply uses a global greedy allocation algorithm. More works investigate multi-
objective coordinated scheduling, such as node and path coordinated selection [18, 50], jointly
service placement and request scheduling in edge computing [11, 30, 32], as well as load and
performance coordinated optimizing in PCDN resource management [51, 60]. Entact [62] jointly
optimizes performance and cost, which is similar with our work, but simplifies the cost model to
reduce the computational complexity.

9 Conclusion
Large-scale edge CDNs suffer from high bandwidth costs. However, even state-of-the-art solutions
still face large performance gaps between optimal, expected, and actual cost savings due to over-
looking uncertainties in edge CDN systems. This paper presents Oceanus, a coordinated traffic
scheduling system designed for large-scale edge CDN systems. Oceanus is designed to address the
above uncertainties in both proactive and reactive manners. Extensive trace-driven and real-world
experiments demonstrate that Oceanus can significantly reduce bandwidth costs over baselines
with no performance degradation.

Acknowledgments
We sincerely thank our shepherd and all anonymous reviewers for their constructive feedback.
This work was supported in part by the National Key R&D Program of China (2022YFB2901800).

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:19

References
[1] [n. d.]. THE GLOBAL INTERNET PHENOMENA REPORT MARCH 2024.

https://www.applogicnetworks.com/phenomena.
[2] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. 2012.

Unreeling netflix: Understanding and improving multi-cdn movie delivery. In 2012 Proceedings IEEE Infocom. IEEE,
1620–1628.

[3] Micah Adler, Ramesh K Sitaraman, and Harish Venkataramani. 2011. Algorithms for optimizing the bandwidth cost of
content delivery. Computer Networks 55, 18 (2011), 4007–4020.

[4] Protick Bhowmick, Md. Ishtiaq Ashiq, Casey Deccio, and Taejoong Chung. 2023. TTL Violation of DNS Resolvers in
the Wild. In Passive and Active Measurement: 24th International Conference, PAM 2023, Virtual Event, March 21–23, 2023,
Proceedings. 550–563. doi:10.1007/978-3-031-28486-1_23

[5] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye, Ratul Mahajan, Ganesh Ananthanarayanan,
and Ethan Katz-Bassett. 2018. Odin:{Microsoft’s} scalable {Fault-Tolerant}{CDN} measurement system. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). 501–517.

[6] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. 2015. End-user mapping: Next generation request routing for
content delivery. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 167–181.

[7] Huan Chen, Huiyou Zhan, Haisheng Tan, Huang Xu, Weihua Shan, Shiteng Chen, and Xiang-Yang Li. 2022. Online
Traffic Allocation Based on Percentile Charging for Practical CDNs. In 2022 IEEE/ACM 30th International Symposium
on Quality of Service (IWQoS). IEEE, 1–10.

[8] David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell, Sonia Margulis, Lin Xiao, Pol Mauri Ruiz, Justin
Meza, Kiryong Ha, Shruti Padmanabha, et al. 2019. Taiji: managing global user traffic for large-scale internet services
at the edge. In Proceedings of the 27th ACM Symposium on Operating Systems Principles. 430–446.

[9] Richard G Clegg, Raul Landa, João Taveira Araújo, Eleni Mykoniati, David Griffin, and Miguel Rio. 2014. Tardis: Stably
shifting traffic in space and time. ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014), 593–594.

[10] IBM ILOG Cplex. 2009. V12. 1: User’s Manual for CPLEX. International Business Machines Corporation 46, 53 (2009),
157.

[11] Vajiheh Farhadi, Fidan Mehmeti, Ting He, Thomas F La Porta, Hana Khamfroush, Shiqiang Wang, Kevin S Chan, and
Konstantinos Poularakis. 2021. Service placement and request scheduling for data-intensive applications in edge
clouds. IEEE/ACM Transactions on Networking 29, 2 (2021), 779–792.

[12] Yuan Feng, Baochun Li, and Bo Li. 2012. Jetway: Minimizing costs on inter-datacenter video traffic. In Proceedings of
the 20th ACM international conference on Multimedia. 259–268.

[13] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying Chen, and Oleg Surmachev. 2015.
{FastRoute}: A Scalable {Load-Aware} Anycast Routing Architecture for Modern {CDNs}. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). 381–394.

[14] David K Goldenberg, Lili Qiuy, Haiyong Xie, Yang Richard Yang, and Yin Zhang. 2004. Optimizing cost and performance
for multihoming. ACM SIGCOMM Computer Communication Review 34, 4 (2004), 79–92.

[15] Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https://www.gurobi.com.
[16] {Robin John} Hyndman and George Athanasopoulos. 2018. Forecasting: Principles and Practice (2nd ed.). OTexts,

Australia.
[17] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai Menache. 2016. Dynamic pricing and

traffic engineering for timely inter-datacenter transfers. In Proceedings of the 2016 ACM SIGCOMM Conference. 73–86.
[18] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang. 2009. Cooperative content distribution and traffic

engineering in an ISP network. In Proceedings of the eleventh international joint conference on Measurement and modeling
of computer systems. 239–250.

[19] Yuchen Jin, Sundararajan Renganathan, Ganesh Ananthanarayanan, Junchen Jiang, Venkata N Padmanabhan, Manuel
Schroder, Matt Calder, and Arvind Krishnamurthy. 2019. Zooming in on wide-area latencies to a global cloud provider.
In Proceedings of the ACM Special Interest Group on Data Communication. 104–116.

[20] Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. 1998. Rate control for communication networks: shadow
prices, proportional fairness and stability. Journal of the Operational Research society 49, 3 (1998), 237–252.

[21] Raul Landa, Lorenzo Saino, Lennert Buytenhek, and João Taveira Araújo. 2021. Staying alive: Connection path
reselection at the edge. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
233–251.

[22] Nikolaos Laoutaris, Georgios Smaragdakis, Pablo Rodriguez, and Ravi Sundaram. 2009. Delay tolerant bulk data
transfers on the internet. In Proceedings of the eleventh international joint conference on Measurement and modeling of
computer systems. 229–238.

[23] Fuyou Li, Zitian Zhang, Yunpeng Zhu, and Jie Zhang. 2020. Prediction of twitter traffic based on machine learning and
data analytics. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

https://doi.org/10.1007/978-3-031-28486-1_23
https://www.gurobi.com

36:20 Chuanqing Lin et al.

IEEE, 443–448.
[24] Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin Li, Jufeng Chen, Jingyu Yang, Chunli Zong, Aiyun Chen, Qinghua Wu,

et al. 2022. Livenet: a low-latency video transport network for large-scale live streaming. In Proceedings of the ACM
SIGCOMM 2022 Conference. 812–825.

[25] Wenxin Li, Keqiu Li, Deke Guo, Geyong Min, Heng Qi, and Jianhui Zhang. 2016. Cost-minimizing bandwidth guarantee
for inter-datacenter traffic. IEEE Transactions on Cloud Computing 7, 2 (2016), 483–494.

[26] Wenxin Li, Xiaobo Zhou, Keqiu Li, Heng Qi, and Deke Guo. 2018. TrafficShaper: Shaping inter-datacenter traffic to
reduce the transmission cost. IEEE/ACM Transactions on Networking 26, 3 (2018), 1193–1206.

[27] Yuhua Lin, Haiying Shen, and Liuhua Chen. 2015. Ecoflow: An economical and deadline-driven inter-datacenter video
flow scheduling system. In Proceedings of the 23rd ACM international conference on Multimedia. 1059–1062.

[28] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul Mahajan, Jitendra Padhye, and Ming
Zhang. 2016. Efficiently delivering online services over integrated infrastructure. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). 77–90.

[29] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, HaoWang, and Chen Tian. 2012. Optimizing cost and performance
for content multihoming. In Proceedings of the ACM SIGCOMM2012 conference on Applications, technologies, architectures,
and protocols for computer communication. 371–382.

[30] Xiao Ma, Ao Zhou, Shan Zhang, and Shangguang Wang. 2020. Cooperative service caching and workload scheduling
in mobile edge computing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2076–2085.

[31] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer
Communication Review 45, 3 (2015), 52–66.

[32] Yingling Mao, Xiaojun Shang, and Yuanyuan Yang. 2022. Joint resource management and flow scheduling for SFC
deployment in hybrid edge-and-cloud network. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 170–179.

[33] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry Liu, and Mingwei Xu. 2022. Achieving
consistent low latency for wireless real-time communications with the shortest control loop. In Proceedings of the ACM
SIGCOMM 2022 Conference. 193–206.

[34] Murtaza Motiwala, Amogh Dhamdhere, Nick Feamster, and Anukool Lakhina. 2012. Towards a cost model for network
traffic. ACM SIGCOMM Computer Communication Review 42, 1 (2012), 54–60.

[35] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker. 2019. Cache Me If You Can: Effects
of DNS Time-to-Live (IMC ’19). 101–115. doi:10.1145/3355369.3355568

[36] Matthew K Mukerjee, Ilker Nadi Bozkurt, Devdeep Ray, Bruce M Maggs, Srinivasan Seshan, and Hui Zhang. 2017.
Redesigning cdn-broker interactions for improved content delivery. In Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. 68–80.

[37] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and Hui Zhang. 2015. Practical,
real-time centralized control for cdn-based live video delivery. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. 311–324.

[38] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network: a platform for high-performance
internet applications. ACM SIGOPS Operating Systems Review 44, 3 (2010), 2–19.

[39] Nipun Ramakrishnan and Tarun Soni. 2018. Network traffic prediction using recurrent neural networks. In 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 187–193.

[40] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan, Martin Ellis, and KV Rashmi. 2023.
Tambur: Efficient loss recovery for videoconferencing via streaming codes. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 953–971.

[41] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and Ethan Katz-Bassett. 2019. Internet perfor-
mance from facebook’s edge. In Proceedings of the Internet Measurement Conference. 179–194.

[42] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James Quinn,
Saif Hasan, Petr Lapukhov, and Hongyi Zeng. 2017. Engineering egress with edge fabric: Steering oceans of content to
the world. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication. 418–431.

[43] Haiying Shen and Chenxi Qiu. 2018. Scheduling inter-datacenter video flows for cost efficiency. IEEE Transactions on
Services Computing 14, 3 (2018), 834–849.

[44] Patrick Shuff. 2016. Building a billion user load balancer. (2016).
[45] Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. 2021. Cost-effective cloud edge traffic engineering

with cascara. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21). 201–216.
[46] Rade Stanojevic, Nikolaos Laoutaris, and Pablo Rodriguez. 2010. On economic heavy hitters: Shapley value analysis of

95th-percentile pricing. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. 75–80.
[47] Sean J Taylor and Benjamin Letham. 2018. Forecasting at scale. The American Statistician 72, 1 (2018), 37–45.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

https://doi.org/10.1145/3355369.3355568

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:21

[48] Yu Tian, Zhenyu Li, Matthew Yang Liu, Jian Mao, Gareth Tyson, and Gaogang Xie. 2024. Cost-Saving Streaming:
Unlocking the Potential of Alternative Edge Node Resources. In Proceedings of the 2024 ACM on Internet Measurement
Conference. 580–587.

[49] Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir, and Ram Rajagopal. 2021.
NeuralProphet: Explainable Forecasting at Scale. arXiv:2111.15397 [cs.LG] https://arxiv.org/abs/2111.15397

[50] Vytautas Valancius, Bharath Ravi, Nick Feamster, and Alex C Snoeren. 2013. Quantifying the benefits of joint content
and network routing. In Proceedings of the ACM SIGMETRICS/international conference on Measurement and modeling of
computer systems. 243–254.

[51] Haiping Wang, Ruixiao Zhang, Chaojun Li, Zhichen Xue, Yajie Peng, Xiaofei Pang, Yixuan Zhang, Shaorui Ren, and
Shu Shi. 2024. Twist: A Multi-site Transmission Solution for On-demand Video Streaming. Proceedings of the ACM on
Networking 2, CoNEXT2 (2024), 1–19.

[52] Xiaoliang Wang, Penghui Mi, Yong Zhu, Baoyi An, Yinhua Wang, Lixiang Wang, Xuezhi Yu, Qiong Xie, Xiang Huang,
Mingliang Yin, et al. 2024. EdgeCross: Cloud Scale Traffic Management at Peering Edges. Proceedings of the ACM on
Networking 2, CoNEXT4 (2024), 1–23.

[53] Patrick Wendell, Joe Wenjie Jiang, Michael J Freedman, and Jennifer Rexford. 2010. Donar: decentralized server
selection for cloud services. In Proceedings of the ACM SIGCOMM 2010 conference. 231–242.

[54] Hong Xu and Baochun Li. 2013. Joint request mapping and response routing for geo-distributed cloud services. In 2013
Proceedings IEEE INFOCOM. IEEE, 854–862.

[55] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang Wang, Ke Li, Jingyu Yang, and Xuanzhe
Liu. 2021. From cloud to edge: a first look at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference. 37–53.

[56] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. 2017. Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. 432–445.

[57] Ziwen Ye, Qing Li, Chunyu Qiao, Xiaoteng Ma, Yong Jiang, Qian Ma, Shengbin Meng, Zhenhui Yuan, and Zili Meng.
2024. KEPC-Push: A Knowledge-Enhanced Proactive Content Push Strategy for Edge-Assisted Video Feed Streaming.
In 2024 USENIX Annual Technical Conference (USENIX ATC 24). 321–338. https://www.usenix.org/conference/atc24/
presentation/ye-ziwen

[58] Huiyou Zhan, Haisheng Tan, Huang Xu, Chi Zhang, Hongqiu Ni, Pengfei Zhang, Weihua Shan, and Xiang-Yang Li.
2023. Online Midgress-Sensitive Traffic Allocation for Percentile Charging in Pracitcal CDNs. In 2023 IEEE/ACM 31st
International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[59] Huanhuan Zhang, Congkai An, Anfu Zhou, Yifan Zhu, Weilin Sun, Yixuan Lu, Jiahao Chen, Liang Liu, Huadong Ma,
and Aiguo Fei. 2024. Venus: Enhancing QoE of Crowdsourced Live Video Streaming by Exploiting Multiflow Viewer
Assistance. In Proceedings of the 30th Annual International Conference on Mobile Computing and Networking. 170–184.

[60] Rui-Xiao Zhang, Haiping Wang, Shu Shi, Xiaofei Pang, Yajie Peng, Zhichen Xue, and Jiangchuan Liu. 2024. Enhancing
Resource Management of the World’s Largest {PCDN} System for {On-Demand} Video Streaming. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). 951–965.

[61] Rui-Xiao Zhang, Changpeng Yang, XiaochanWang, Tianchi Huang, Chenglei Wu, Jiangchuan Liu, and Lifeng Sun. 2022.
Aggcast: Practical cost-effective scheduling for large-scale cloud-edge crowdsourced live streaming. In Proceedings of
the 30th ACM International Conference on Multimedia. 3026–3034.

[62] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Charlie Hu, Ratul Mahajan, and Blaine Christian. 2010. Optimizing
Cost and Performance in Online Service Provider Networks.. In NSDI. 33–48.

[63] Rui Zhang-Shen and Nick McKeown. 2004. Designing a predictable Internet backbone network. HotNets.
[64] Gongming Zhao, JingzhouWang, Hongli Xu, Zhuolong Yu, and Chunming Qiao. 2023. COIN: Cost-Efficient Traffic Engi-

neering with Various Pricing Schemes in Clouds. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications.
IEEE, 1–10.

[65] Pengxiang Zhao, Jintao You, and Xiaoming Yuan. 2024. Circling Reduction Algorithm for Cloud Edge Traffic Allocation
Under the 95th Percentile Billing. IEEE/ACM Transactions on Networking (2024).

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

https://arxiv.org/abs/2111.15397
https://arxiv.org/abs/2111.15397
https://www.usenix.org/conference/atc24/presentation/ye-ziwen
https://www.usenix.org/conference/atc24/presentation/ye-ziwen

36:22 Chuanqing Lin et al.

Appendix
A Detailed Algorithms for Bandwidth Planner and Flow Scheduler
We show the detailed algorithms adopted by the bandwidth planner and the flow scheduler.

At the start of each billing cycle, Oceanus first initializes the target billable bandwidth for each
edge node by solving an MILP optimization problem (§4.1). The optimization problem is formalized
as follows:

min
𝐿

∑︁
𝑛∈𝑁

𝑝𝑛 · 𝐿𝑛 (5)

s.t. 𝐵𝑡𝑛 ≤ 𝐶𝑛,∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 ; (6)
𝐵𝑡𝑛 − 𝜆𝑡𝑛 ∗𝑀 <= 𝐿𝑛,∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 ; (7)∑︁
𝑡

𝜆𝑡𝑛 ≤ ⌊
|𝑇 |
20
⌋,∀𝑛 ∈ 𝑁 ; (8)∑︁

𝑖

𝑋 𝑡
𝑖 𝑗 ≤

∑︁
𝑛∈𝑁 𝑗

𝐵𝑡𝑛,∀𝑗 ∈ 𝑅, 𝑡 ∈ 𝑇 ; (9)∑︁
𝑗

𝑋 𝑡
𝑖 𝑗 ≥ 𝐷𝑡

𝑖 ,∀𝑖 ∈ 𝑅, 𝑡 ∈ 𝑇 ; (10)

𝑋 𝑡
𝑖 𝑗 ≤ 0,∀𝑡 ∈ 𝑇, 𝑗 ∉ 𝐶𝑅𝑃𝑖 . (11)

where 𝜆𝑡𝑛 ∈ {0, 1} represents the augmentation decision for node 𝑛 in time slot 𝑡 and ⌊· · · ⌋ indicates
rounding down.𝑀 is a large constant integer (e.g., infinitely positive) [7, 45, 58, 64], ensuring that
𝐵𝑡𝑛 can be larger than 𝐿𝑛 if node 𝑛 is augmented (i.e., 𝜆𝑡𝑛 = 1). Eq. 6, Eqs. 7-8, Eqs. 9-10, and Eq. 11
correspond to the four types of constraints, respectively.
At the start of each day, the bandwidth planner updates the target billable bandwidth for each

node (§4.2). Specifically, Oceanus adopts a multi-step process to solve the problem, which is outlined
in Alg. 1.

Based on the latest target billable bandwidth, the bandwidth planner selects nodes to augment to
provide sufficient bandwidth to cover traffic demands every 5 minutes (§4.3). Oceanus first selects
nodes with minimal marginal costs, and then globally adjusts the decision to balance bandwidth
provision across regions. The algorithm is outlined in Alg. 2.
The flow assigner adjusts the scheduling mapping also every 5 minutes, based on the latest

bandwidth budget at each node (§5). The assignment algorithm is outlined in Alg. 3.

B Mixed Billing Schemes’ Potential
In this section, we first discuss the benefits provided by including average-billed nodes in the
system. Next, the method for computing bandwidth budgets for average-billed nodes is explained. It
is noteworthy that the fundamental principle remains applicable to other linear billable bandwidth
computation schemes and billing functions.
Overall bandwidth costs reduction. The first advantage lies in the further bandwidth cost

reduction. By offloading traffic demands from percentile-billed nodes to average-billed nodes, the
utilization curve of the percentile-billed nodes can be flattened. This allows the 95th-percentile
billable bandwidth of a percentile-billed node to be reduced to the (1 − 1/𝑝)th-percentile billable
bandwidth, where 𝑝 represents the relative price of the average-billed node.
For ease of explanation, consider a scenario with a single 95th-percentile billed node, 𝑛95, and

a single average billed node, 𝑛𝑎𝑣𝑔. Each of these nodes has an unlimited capacity. The unit price
for the average billed node 𝑛𝑎𝑣𝑔 is 𝑝 times higher than for the percentile billed node 𝑛95. During a
billing cycle 𝑇 = {𝑡1, · · · , 𝑡𝐼 } with 𝐼 time slots, the traffic demand series is given by 𝐷 = {𝐷𝑡 }.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:23

Algorithm 1: Daily Target Billable Bandwidth Update
Input: Previous day’s regional traffic demands: 𝐷𝑖 ; history bandwidth budgets 𝐵𝑡

𝑛 ; latest target billable bandwidths
𝐿′𝑛 ; remaining days 𝑑 .

Output: New target billable bandwidths 𝐿𝑛 .

1 𝐷̂𝑖 ← UpdateTrafficModel(𝐷𝑖 ,TodayIsWeekend);
2 𝐴𝑔𝑚𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← 0;
3 for 𝑛 ∈ 𝑁 do
4 𝑆𝑙𝑜𝑡𝑠 ← ∑

𝑡 1{𝐵𝑡
𝑛>𝐿′𝑛 } ;

5 𝐴𝑔𝑚𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑒𝑐𝑠+ = (𝑀𝑎𝑥𝑆𝑙𝑜𝑡𝑠 − 𝑆𝑙𝑜𝑡𝑠) · (𝐶𝑛 − 𝐿′𝑛) ;
6 end
7 𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑎 ← 𝐴𝑔𝑚𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠/𝑑 ;
8 𝑞 ← BinarySearch({𝐷̂𝑖 }, DailyQuota);
9 foreach region 𝑖 ∈ 𝑅 do 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 ← Percentile(𝐷̂𝑖 , 𝑞);

10 Solve LPs to find new 𝐿𝑛 :

min
𝐿

∑︁
𝑛∈𝑁

𝑝𝑛 · 𝐿𝑛 (12)

s.t. 𝐿𝑛 ≤ 𝐶𝑛, ∀𝑛 ∈ 𝑁 ; (13)∑︁
𝑖

𝑋𝑖 𝑗 ≤
∑︁
𝑖∈𝑁 𝑗

𝐿𝑛, ∀ 𝑗 ∈ 𝑅; (14)∑︁
𝑗

𝑋𝑖 𝑗 ≥ 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑖 , ∀𝑖 ∈ 𝑅; (15)

𝑋𝑖 𝑗 ≤ 0, ∀ 𝑗 ∉ 𝐶𝑅𝑃𝑖 . (16)

At the start of the allocation, we leave all traffic demands on node 𝑛95. The utilization 𝑢𝑡 of node
𝑛95 equals 𝐷𝑡 , i.e., 𝑢𝑡 = 𝐷𝑡 . The initial billable bandwidth can be computed as 𝑃95 (𝐷), where 𝑃𝑞 (·)
denotes the 𝑞-percentile largest value for a sequence. Now we migrate a specific amount of traffic
demand 𝛿𝑡 at time slot 𝑡 to node 𝑛𝑎𝑣𝑔. Let the remaining cost of node 𝑛95 be 𝑥 = 𝑃95 ({𝑢′𝑡 }), where
𝑢′𝑡 denotes the remaining load at time 𝑡 . The migrated traffic demand 𝛿𝑡 is set to:

𝛿𝑡 =max(𝑢𝑡 − 𝑥, 0) (17)
At this time, the total bandwidth cost can be represented as a function of 𝑥 :

𝑐𝑜𝑠𝑡 = 𝑃95 ({𝑢′𝑡 }) + 𝑝 ·
1
𝑇

𝑇∑︁
𝑡

𝛿𝑡 = 𝑥 + 𝑝 · 1
𝑇

𝑇∑︁
𝑡

max(𝑢𝑡 − 𝑥, 0) (18)

To find the minimum overall bandwidth cost, let
d𝑐𝑜𝑠𝑡
d𝑥

= 1 − 𝑝 · 1
𝑇

𝑇∑︁
𝑡

1{𝑢𝑡 ≥𝑥 } = 0 (19)

where 1{𝑢𝑡 ≥𝑥 } is the indicator function. Finally, we get:
𝑇∑︁
𝑡

1{𝑢𝑡 ≥𝑥 } =
1
𝑝
·𝑇 (20)

The Eq. 20 shows that we can continuously migrate the excess traffic away from the 95-percentile
billed node until the remaining 95th-percentile largest utilization reaches the value 𝑥 for 1/𝑝 of
all times. This migration essentially flattens the utilization curve on node 𝑛95 to meet 𝑃95 ({𝑢′𝑡 }) =
𝑃1−1/𝑝 ({𝑢′𝑡 }). As a trade-off, the migrated traffic demands will be billed by the average volume at a
higher unit price. A steeper traffic demand curve will reduce the amount of this part of the traffic
demand, thus saving more bandwidth costs.
Buffer for percentile billed nodes. The average-billed nodes also act as a buffer when the

free slots of percentile-billed nodes are exhausted. Although the marginal cost of average-billed

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

36:24 Chuanqing Lin et al.

Algorithm 2: Real-Time Node Augmentation
Input: Real time traffic demands 𝐷𝑡

𝑖
; target billable bandwidth 𝐿𝑛 ; history utilization rate of nodes𝑈 𝑡

𝑛 ; report 𝐹𝑖 .
Output: Actual bandwidth budgets 𝐵𝑡

𝑛 ; suggestion 𝐻 𝑡
𝑖 𝑗
.

1 𝐺𝑖𝑣𝑒𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← ∑
𝑛∈𝑁 𝐿𝑛 ;

2 if
∑

𝑖 𝐷
𝑡
𝑖
≤ 𝐺𝑖𝑣𝑒𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 then

3 foreach 𝑛 ∈ 𝑁 do 𝐵𝑡
𝑛 ← 𝐿𝑛 ;

4 return;
5 end
6 foreach 𝑛 ∈ 𝑁 do𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝑛 ← ComputeMarginalCost(n);
7 foreach 𝑛 ∈ 𝑁 do 𝐴𝑔𝑚𝑡𝑆𝑙𝑜𝑡𝑠𝑛 ← ComputeAgmtSlots(n);
8 𝑃𝑜𝑜𝑙 ← Sort(MarginalCost, AgmtSlots);
9 𝐴← ∅;

10 while
∑

𝑖 𝐷
𝑡
𝑖
≤ 𝐺𝑖𝑣𝑒𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do // augment

11 𝑛 ← 𝑃𝑜𝑜𝑙 .𝑝𝑜𝑝 () ;
12 𝐴← 𝐴 + {𝑛};𝐺𝑖𝑣𝑒𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠+ =𝐶𝑛 − 𝐿𝑛

13 end
14 foreach 𝑖 𝑖𝑛 𝐹𝑖 ≥ 0 do // feedback
15 while 𝐹𝑖 ≥ 0 do
16 𝑛 𝑎𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 ← 𝑃𝑜𝑜𝑙 .𝑝𝑜𝑝 (𝐶𝑅𝑃𝑖) ;
17 𝐴← 𝐴 + {𝑛}; 𝐹𝑖− =𝐶𝑛 − 𝐿𝑛 ; 𝐻 𝑡

𝑖 𝑗
+ =𝐶𝑛 − 𝐿𝑛 ;

18 end
19 end
20 foreach 𝑛 ∈ 𝐴 𝑎𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖 do // recycle
21 for region 𝑗 ∈ 𝑅 𝑤ℎ𝑒𝑟𝑒 𝐹 𝑗 + (𝐶𝑛 − 𝐿𝑛) ≤ 0 and 𝑖 ∈ 𝐶𝑅𝑃 𝑗 do
22 𝐴← 𝐴 − 𝑛; 𝐹 𝑗+ =𝐶𝑛 − 𝐿𝑛 ; 𝐻 𝑡

𝑖 𝑗
+ =𝐶𝑛 − 𝐿𝑛 ;

23 end
24 end
25 foreach 𝑛 ∈ 𝑁 do
26 if 𝑛 ∈ 𝐴 then 𝐵𝑡

𝑛 ← 𝐶𝑛 ;
27 else 𝐵𝑡

𝑛 ← 𝐿𝑛 ;
28 end

nodes is slightly higher than zero, it is still extremely low. Oceanus prioritizes the utilization of
average-billed nodes when unanticipated high traffic demand occurs late in the billing cycle, while
free slots of the percentile billing nodes are exhausted. This approach prevents a significant increase
in target billable bandwidth for percentile-billed nodes during the final days.
Bandwidth budgets computation. The bandwidth planner computes the entire day’s band-

width budgets of average billed nodes in daily optimization, where the objective function in (12)
can be extended as follows:

min
𝐿𝑡𝑛

∑︁
𝑛∈𝑁95

𝑝𝑛 · 𝐿𝑖 +
∑︁

𝑛∈𝑁𝑎𝑣𝑔

𝑝𝑛 ·
1
𝑇
·

𝑇∑︁
𝑡

𝐿𝑡𝑛 + 𝜌 ·
𝑇∑︁

𝑖∈𝑁𝑎𝑣𝑔

|𝐿𝑡𝑛 − 𝐿𝑡−1𝑛 | (21)

where the first item minimizes the bandwidth cost of percentile billed nodes (§4.2), the second
item minimizes the bandwidth cost of average billed nodes, and the last item promises the stability
of bandwidth budgets for average billed nodes. The penalty’s weight 𝜌 is set to 10−4.

C Testbed Setup and Trace Collection Detail
We provide a detailed introduction to the trace collection method and the traffic replay testbed.

Traffic demand collection. We recorded the requested domain name, timestamp, user region
source, node ID, and transmitted data size for every request at our edge nodes. Information associated

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

Oceanus: Scheduling Traffic Flows to Achieve Cost-Efficiency under Uncertainties in Large-Scale Edge CDNs 36:25

Algorithm 3: Flow Assignment
Input: Last scheduling mapping𝑀𝑡−1; bandwidth budgets 𝐵𝑡

𝑛 ; node utilization𝑈 𝑡
𝑛 ; flow RTT 𝑙𝑎𝑡𝑠 ; suggestion 𝐻 𝑡 .

Output: New scheduling mapping𝑀𝑡 ; report 𝐹 𝑡

1 𝑄 ← ∅;
2 foreach 𝑠 ∈ 𝑆 do // flow performance check
3 if 𝑙𝑎𝑡𝑠 ≥ 𝑆𝐿𝐴𝑠 then𝑄 ← 𝑄 + {𝑠 };
4 end
5 while not TimeOut do
6 foreach 𝑛 ∈ 𝑁 do // node utilization check
7 if 𝑈 𝑡

𝑛 ≥ 𝜂𝐵𝑡
𝑛 then

8 𝑓 𝑙𝑜𝑤𝑠 ← MarkFlows(𝑛,𝑈 𝑡
𝑛 − 𝜂𝐵𝑡

𝑛) ;
9 𝑄 ← 𝑄 + 𝑓 𝑙𝑜𝑤𝑠 ;

10 end
11 end
12 if 𝑄 is empty then break;
13 foreach 𝑠 ∈ 𝑄 𝑎𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖 do // reassign
14 𝑁𝑜𝑑𝑒𝑃𝑜𝑜𝑙𝑠 ← {𝑛 ∈ 𝑁 𝑗 | 𝑗 ∈ 𝐶𝑅𝑃𝑖 };
15 sort 𝑁𝑜𝑑𝑒𝑃𝑜𝑜𝑙𝑠 by remaining bandwidth 𝜂𝐵𝑡

𝑛 −𝑈 𝑡
𝑛 ;

16 𝑛 ← 𝑁𝑜𝑑𝑒𝑃𝑜𝑜𝑙𝑠 [0];
17 if 𝜂𝐵𝑡

𝑛 −𝑈 𝑡
𝑛 ≥ 𝑠𝑖𝑧𝑒𝑠 then assign 𝑠 to 𝑛;𝑄 ← 𝑄 − {𝑠 };

18 if not assigned then
19 sort 𝐻 𝑡

𝑖
;

20 foreach 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 ∈ 𝐻 𝑡
𝑖
do

21 𝑛,𝑛𝑒𝑤𝑓 𝑙𝑜𝑤𝑠 ← TakeOverFromRegion (j);
22 𝑄 ← 𝑄 + 𝑛𝑒𝑤𝑓 𝑙𝑜𝑤𝑠 ;
23 assign 𝑠 to 𝑛;𝑄 ← 𝑄 − {𝑠 }; break;
24 end
25 end
26 if not assigned then assign 𝑠 to 𝑁𝑜𝑑𝑒𝑃𝑜𝑜𝑙𝑠 [0];
27 end
28 end
29 foreach 𝑖 ∈ 𝑅 do 𝐹 𝑡

𝑖
← ∑

𝑛∈𝑖 𝑈
𝑡
𝑛 − 𝐵𝑡

𝑛 ; // feedback

with individual users was not collected. This raw data was subsequently aggregated to compute
the traffic demand for each 〈domain name, user region〉 pair on a 5-minute timescale.
Modeling Systemic Deviations. The actual traffic demand fluctuates between the moment

when measurement data is collected and when the scheduling decision takes effect. We model this
as a traffic demand error representing all forms of systemic uncertainty, as the new, precise demand
is only observable after the next round of measurement data is collected.

Unmodeled Factors.We did not explicitly track public DNS settings. The uncertainty stemming
from Internet settings (e.g., BGP announcement changes, non-standard DNS settings [4, 28, 35]) is
treated as a component of the aforementioned systemic uncertainty. We also omit performance
deterioration due to cache misses, as cache setup is generally quick and only affects a small group
of users. Similarly, backward traffic from edge nodes to L2 nodes is omitted, as its scale is orders of
magnitude smaller than the outbound traffic to users.

Received June 2025; revised September 2025; accepted October 2025

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 36. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Edge CDN Systems
	2.2 CDN Scheduling Problem
	2.3 Motivation: Pitfall of Existing Solutions
	2.4 Design Challenges

	3 Oceanus Design Overview
	4 Cost-Driven Bandwidth Planning
	4.1 Target Billable Bandwidth Initialization
	4.2 Daily Billable Bandwidth Update
	4.3 Real-time Node Augmentation

	5 Performance-Oriented Flow Scheduling
	5.1 Flow Management
	5.2 Flow Assignment

	6 Evaluation
	6.1 Trace-Driven Evaluation on Bandwidth Cost Savings
	6.2 Bandwidth Cost Reduction Deep Dive
	6.3 Large-Scale Evaluation on Flow Scheduling

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Detailed Algorithms for Bandwidth Planner and Flow Scheduler
	B Mixed Billing Schemes' Potential
	C Testbed Setup and Trace Collection Detail

